Multidrug resistance poses a global threat to the poultry industry and public health, so the direction towards eliminating the use of antibiotics and finding alternatives is a vital step to solve this problem. Thyme microemulsion (10% oil/water) had nanodrop size 28.65 ± 0.89 nm, with a polydispersity index (PDI) of 0.28 with greater homogeneity. It showed IC50 > 100 ug/ml on cytotoxicity assay and 14 active components by GC-Mass. The study was carried out using 210 Cobb chicks divided into fourteen groups. The infected groups were challenged using two Salmonella Enteritidis multidrug resistance (MDR) and Salmonella Enteritidis sensitive strains to the sulpha-trimethoprim antibiotic. The challenged inoculum was 1 × 109 CFU of Salmonella Enteritidis by oral route. The MIC treatments doses were 1 ml/liter water for thyme oil and thyme microemulsion and 33.34 mg/kg b.wt sulfadiazine for 5 days. The results showed that both thymol oil (0.1%) and microemulsion (0.01%) are able to decrease the count of Salmonella Enteritidis in cecal content and fecal dropping and the mortality rates after five days of treatment. In addition, thyme oil and microemulsion had no pathological alteration on chickens’ tissues that were collected two weeks after giving the treatment. By the robust HPLC method, the SDZ and TMP residues in tissues of infected groups treated with Cotrimazine® + thyme oil microemulsion had a slight significant economic impact ( P < 0.05 ) compared to Cotrimazine® alone. In conclusion, thymol oil and microemulsion could be an alternative economic choice for multidrug resistance Salmonella Enteritidis treatment in poultry farms.
The current situation of antibiotic resistance of most bacterial pathogens was a threat to the poultry and public health with increasing economic losses. Regarding this problem, monitoring of the circulating microorganisms occurred with the antibiotic resistance profile. A total of 657 different samples from internal organs (liver, heart, lung, and yolk) and paper-lining chick boxes were collected from native chicken farms which were submitted to the Reference Laboratory for Veterinary Quality Control on Poultry Production in the period from 2014 to 2018 for the detection of Salmonella, Escherichia coli (E. coli), and Staphylococcus. The bacterial isolates were tested for their antimicrobial susceptibility by disk diffusion technique. Salmonella was isolated from 128 out of 657 (19.5%), E. coli was isolated from 496 out of 657 (75.5%), and Staphylococcus species was isolated from 497 out of 657 (75.6%). All Salmonella positive samples were examined for antibiotic resistance against 10 different antibiotics, and the highest percentage all over the five years was against penicillin, ampicillin, and tetracycline. All E. coli positive samples were examined for antibiotic resistance against 14 different antibiotics, and the highest percentage all over the five years was with ampicillin, tetracycline, norfloxacin, streptomycin, and danofloxacin. All Staphylococcus positive sample species were examined for antibiotic resistance against 14 different antibiotics, and the highest percentage of resistance all over the five years was shown with tetracycline, streptomycin, ampicillin, and nalidixic acid.
Background and Aim: Multidrug resistance (MDR) of Escherichia coli has become an increasing concern in poultry farming worldwide. However, E. coli can accumulate resistance genes through gene transfer. The most problematic resistance mechanism in E. coli is the acquisition of genes encoding broad-spectrum β-lactamases, known as extended-spectrum β-lactamases, that confer resistance to broad-spectrum cephalosporins. Plasmid-mediated quinolone resistance genes (conferring resistance to quinolones) and mcr-1 genes (conferring resistance to colistin) also contribute to antimicrobial resistance. This study aimed to investigate the prevalence of antimicrobial susceptibility and to detect β-lactamase and colistin resistance genes of E. coli isolated from broiler farms in Egypt. Materials and Methods: Samples from 938 broiler farms were bacteriologically examined for E. coli isolation. The antimicrobial resistance profile was evaluated using disk diffusion, and several resistance genes were investigated through polymerase chain reaction amplification. Results: Escherichia coli was isolated and identified from 675/938 farms (72%) from the pooled internal organs (liver, heart, lung, spleen, and yolk) of broilers. Escherichia coli isolates from the most recent 3 years (2018–2020) were serotyped into 13 serotypes; the most prevalent serotype was O125 (n = 8). The highest phenotypic antibiotic resistance profiles during this period were against ampicillin, penicillin, tetracycline, and nalidixic acid. Escherichia coli was sensitive to clinically relevant antibiotics. Twenty-eight selected isolates from the most recent 3 years (2018–2020) were found to have MDR, where the prevalence of the antibiotic resistance genes ctx, tem, and shv was 46% and that of mcr-1 was 64%. Integrons were found in 93% of the isolates. Conclusion: The study showed a high prevalence of E. coli infection in broiler farms associated with MDR, which has a high public health significance because of its zoonotic relevance. These results strengthen the application of continuous surveillance programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.