IntroductionGlobally, the prevalence of overweight and obesity is increasing, predisposing females to health hazards including compromised reproductive capacity. Our objective was to investigate the effect of ad libitum, isocalorically and hypocalorically restricted high-fat diet (HFD) feeding on reproductive function in diet-induced obese female rats.Material and methodsTwenty female albino Sprague Dawley rats were used; 5 rats were kept on a standard pellet animal diet to serve as a control group (A) and 15 rats were fed a HFD for 9 weeks to induce obesity. The HFD fed animals were equally divided into three groups: an ad libitum HFD group (B), an isocalorically restricted HFD group (C), and a hypocalorically restricted HFD group (D). Estrous cyclicity, hormonal levels, ovarian histopathology and caspase-3 immunoreactivity were evaluated.ResultsThe HFD-fed rats in groups B, C and D had significant irregularity in estrous cyclicity Vs group A (p = 0.001, 0.003 and 0.034 respectively). Groups C and D had significant reduction in serum progesterone level (p = 0.006 and 0.018 Vs A). Isocaloric restriction of HFD feeding significantly increased serum LH. Groups B and C had a significant increase in caspase-3 expression in the ovary (p < 0.001).ConclusionsAd libitum HFD interfered with the normal estrous cycle and enhanced apoptosis of luteal cells in obese female rats. The HFD restriction interfered with the normal estrous cycle and caused functional insufficiency of the corpus luteum in obese female rats. These results suggest that HFD feeding determinately affects female reproductive function independently of caloric intake.
Doxorubicin is a drug that belongs to the anthracycline antibiotics. Nephrotoxicity is one of the serious side effects of doxorubicin treatment. Crocin, which is one of the most bioactive components of saffron, has antioxidant, anti-inflammatory, and antitumor effects. The current study was aimed at investigating the possible protective effects of crocin against doxorubicin-induced nephrotoxicity to elucidate the underlying mechanism of this effect. The study included four groups, six rats in each group: normal control, crocin control, doxorubicin, and crocin/doxorubicin. Doxorubicin and crocin/doxorubicin groups received intraperitoneal injections of doxorubicin (3.5 mg/kg twice weekly for 3 weeks). Rats in the crocin control group and the crocin/doxorubicin group were treated with intraperitoneal injections of crocin (100 mg/kg body weight per day) for 3 weeks. Biomarkers of kidney function and oxidative stress as well as the abundance of mRNA for nuclear factor-κβ and inducible nitric oxide synthase were evaluated. In addition, the abundance of cyclooxygenase 2 and tumor necrosis factor α immunoreactivity was evaluated. Crocin treatment had renoprotective effects manifested by significant improvement in kidney function as well as a reduction in the abundance of biomarkers of oxidative stress markers and inflammatory mediators. In conclusion, crocin has a protective effect against doxorubicin-induced nephrotoxicity in rats by serving as an antioxidant and attenuating the expression of NF-κB, iNOS, COX2, and TNFα.
The overlapping between asthmatic subtypes, including both CD4+ T helper (TH)2 and TH17 cells, is found in the natural course of allergic asthma, especially in exacerbations and severe and insensitive forms to steroids, which are in need of new molecular therapies. In the TH2-subset mediated asthma, fenofibrate displays therapeutic promises, besides evidenced therapeutic effects on TH17-mediated colitis and myocarditis. Therefore, the effects of fenofibrate versus dexamethasone on IL-23/IL-17 axis in ovalbumin (OVA)/lipopolysaccharide (LPS)-induced airway inflammation and bronchial asthma in rats were explored. The OVA/LPS sensitization and challenge were performed for 28 days in male Wistar rats. After sensitization, fenofibrate (100 mg/kg/day) or dexamethasone (2.5 mg/kg/day) was orally administered from the day 15 to 28. Either fenofibrate or dexamethasone attenuated the severity of OVA/LPS-induced airway inflammation and bronchial asthma through significant ameliorations in the total serum immunoglobulin (Ig)E assay; the total and differential leukocytic counts in the bronchoalveolar lavage (BAL) fluid; the lung inflammatory cytokines such as interleukin (IL)-4, IL-13, IL-17, and IL-23, transforming growth factor (TGF)-β, and tumor necrosis factor(TNF)-α levels; and the lung IL-17 and IL-23 expressions. In addition to the reduction in the inflammatory and fibrotic histopathological scores, fenofibrate significantly ameliorated the BAL neutrophilic count and the lung IL-17 and IL-23 expressions in comparison to dexamethasone. The suppression of IL-23/IL-17 axis could be considered a molecular therapeutic target for fenofibrate in OVA/LPS-induced airway inflammation and bronchial asthma. Combined therapeutic regimens of fenofibrate and steroids should be furtherly investigated in severe and resistant asthma.
Targeting peroxisome proliferator-activated receptor-gamma (PPAR-γ) is an approved strategy in facing insulin resistance (IR) for diabetes mellitus (DM) type 2. The PPAR-γ modulators display improvements in the insulin-sensitizing and adverse effects of the traditional thiazolidinediones. Nitazoxanide (NTZ) is proposed as a PPAR-γ receptor ligand with agonistic post-transcriptional effects. Currently, NTZ antidiabetic activities versus pioglitazone (PIO) in a high-fat diet/streptozotocin rat model of type 2 diabetes was explored. Diabetic adult male Wistar rats were treated orally with either PIO (2.7 mg·kg·day) or NTZ (200 mg·kg·day) for 14, 21, and 28 days. Body masses, fasting blood glucose, IR, lipid profiles, and liver and kidney functions of rats were assayed. Hepatic glucose metabolism and PPAR-γ protein expression levels as well as hepatic, pancreatic, muscular, and renal histopathology were evaluated. Significant time-dependent euglycemic and insulin-sensitizing effects with preservation of liver and kidney functions were offered by NTZ. Higher hepatic levels of glucose-6-phosphatase and glucose-6-phosphate dehydrogenase enzymes and PPAR-γ protein expressions were acquired by NTZ and PIO, respectively. NTZ could be considered an oral therapeutic strategy for DM type 2. Further systematic NTZ/PPAR-γ receptor subtype molecular activations are recommended. Simultaneous use of NTZ with other approved antidiabetics should be explored.
Background: Several studies documented the non-hematologic clinical therapeutic uses of recombinant human erythropoietin (EPO). On the other hand, hypertension, thromboembolism, and increased oxidative stress were toxic effects related to the increased hematocrit (Hct) with recombinant human EPO treatment. Accordingly, alternate strategies to reduce erythropoietic activity and other potential side effects of EPO will greatly improve its non-hematopoietic clinical applicability. Aims and Objectives: Our objective was to demonstrate whether curcumin treatment could attenuate the effect of recombinant human EPO on erythropoiesis in EPO-induced polycythemia, and if so, whether this effect is mediated by changing concentrations of iron and its key regulator hormone hepcidin in rats. Materials and Methods: Totally 24 male albino Sprague-Dawley rats were included in this study. Rats were equally divided into four groups: Control group, curcumin-treated group, EPO-induced polycythemia group, and curcumin + EPO-induced polycythemia group. Blood indices and serum concentrations of iron, ferritin, and hepcidin were measured. Results: EPO treatment caused significant increase in hemoglobin (Hb), red blood cells, and Hct versus other study groups (P < 0.05). Curcumin treatment significantly decreased Hct in curcumin-treated group versus control and EPO-induced polycythemia groups (P = 0.021 and 0.008, respectively). Serum iron concentrations were significantly decreased in curcumin + EPO-induced polycythemia group versus control group. Serum ferritin concentrations were significantly decreased in all treated groups versus the control group. Serum hepcidin concentrations were significantly decreased in EPO-induced polycythemia group and curcumin + EPO-induced polycythemia group versus control group. Conclusion: The presented data suggest a potentially attenuating effect of curcumin administration on recombinant human EPO-induced polycythemia. This effect may be mediated by promoting iron deficiency. However, further studies are required to address the safety of this combination treatment and interspecies differences in iron metabolism between rats and human in addition to have better understanding of the role of the hepcidin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.