The aim of this paper is to develop an effective classification approach based on Random Forest (RF) algorithm. Three fruits; i.e., apples, Strawberry, and oranges were analysed and several features were extracted based on the fruits' shape, colour characteristics as well as Scale Invariant Feature Transform (SIFT). A preprocessing stages using image processing to prepare the fruit images dataset to reduce their color index is presented. The fruit image features is then extracted. Finally, the fruit classification process is adopted using random forests (RF), which is a recently developed machine learning algorithm. A regular digital camera was used to acquire the images, and all manipulations were performed in a MATLAB environment. Experiments were tested and evaluated using a series of experiments with 178 fruit images. It shows that Random Forest (RF) based algorithm provides better accuracy compared to the other well know machine learning techniques such as K-Nearest Neighborhood (K-NN) and Support Vector Machine (SVM) algorithms. Moreover, the system is capable of automatically recognize the fruit name with a high degree of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.