Hand images are of paramount importance within critical domains like security and criminal investigation. They can sometimes be the only available evidence of an offender's identity at a crime scene. Approaches to person identification that consider the human hand as a complex object composed of many components are rare. The approach proposed in this paper fills this gap, making use of knuckle creases and fingernail information. It introduces a framework for automatic person identification that includes localisation of the regions of interest within hand images, recognition of the detected components, segmentation of the region of interest using bounding boxes, and similarity matching between a query image and a library of available images. The following hand components are considered: i) the metacarpohalangeal, commonly known as base knuckle; ii) the proximal interphalangeal joint commonly known as major knuckle; iii) distal interphalangeal joint, commonly known as minor knuckle; iv) the interphalangeal joint, commonly known as thumb's knuckle, and v) the fingernails. A key element of the proposed framework is the similarity matching and an important role for it is played by the feature extraction. In this paper, we exploit end-to-end deep convolutional neural networks to extract discriminative high-level abstract features. We further use Bray-Curtis (BC) similarity for the matching process. We validated the proposed approach on well-known benchmarks, the '11k Hands' dataset and the Hong Kong Polytechnic University Contactless Hand Dorsal Images known as 'PolyU HD'. We found that the results indicate that the knuckle patterns and fingernails play a significant role in the person identification. The results from the 11K dataset indicate that the results for the left hand are better than the results for the right hand. In both datasets, the fingernails produced consistently higher identification results than other hand components, with a rank-1 score of 93.65% on the ring finger of the left hand for the '11k Hands' dataset and rank-1 score of 93.81% for the thumb from the 'PolyU HD' dataset.
Machine learning has arisen with advanced data analytics. Many factors influence crop yield, such as soil, amount of water, climate, and genotype. Determining factors that significantly influence yield prediction and identify the most appropriate predictive methods are important in yield management. It is critical to consider and study the combination of different crop factors and their impact on the yield. The objectives of this paper are: (1) to use advanced data analytic techniques to precisely predict the soybean crop yields, (2) to identify the most influential features that impact soybean predictions, (3) to illustrate the ability of Fuzzy Rule-Based (FRB) subsystems , which are self-organizing, self-learning, and data-driven, by using the recently developed Autonomous Learning Multiple-Model First-order (ALMMo-1) system, and (4) to compare the performance with other well-known methods. The ALMMo-1 system is a transparent model, which stakeholders can easily read and interpret. The model is a datadriven and composed of prototypes selected from the actual data. Many factors affect the yield, and data clouds can be formed in the feature/data space based on the data density. The data cloud is the key to the IF part of FRB subsystems , while the THEN part (the consequences of the IF condition) illustrates the yield prediction in the form of a linear regression model, which consists of the yield features or factors. In addition, the model can determine the most influential features of the yield prediction online. The model shows an excellent prediction accuracy with a Root Mean Square Error (RMSE) of 0.0883, and Non-Dimensional Error Index (NDEI) of 0.0611, which is competitive with state-of-the-art methods.
Now-a-days sports plays a very important role in the life of the human being and it allows to keep him healthy and make him always active. Sport is essential for people to have a healthy mind. However, the practice of a sport can have negative effects on the body and human health if it is practiced incorrectly or if it is not adapted to the body or the human health. This is why, in this paper, we have proposed a recommendations system that allows the selection of the right person to practice the right sport according to several factors such as heart rate, speed and size. The implementation was applied to the FitRec dataset with the help of SPARK tool, and the results show that the proposed method is capable of generating the appropriate training for different groups according to their information, where each group gets the appropriate training. The grouping of this data was done by the k-means method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.