With the advancement of social media and its growth, there is a lot of data that can be presented for research in social mining. Twitter is a microblogging that can be used. In this event, a lot of companies used the data on Twitter to analyze the satisfaction of their customer about product quality. On the other hand, a lot of users use social media to express their daily emotions. The case can be developed into a research study that can be used both to improve product quality, as well as to analyze the opinion on certain events. The research is often called sentiment analysis or opinion mining. While The previous research does a particularly useful feature for sentiment analysis, but it is still a lack of performance. Furthermore, they used Support Vector Machine as a classification method. On the other hand, most researchers found another classification method, which is considered more efficient such as Maximum Entropy. So, this research used two types of a dataset, the general opinion data, and the airline's opinion data. For feature extraction, we employ four feature extraction, such as pragmatic, lexical-grams, pos-grams, and sentiment lexical. For the classification, we use both of Support Vector Machine and Maximum Entropy to find the best result. In the end, the best result is performed by Maximum Entropy with 85,8% accuracy on general opinion data, and 92,6% accuracy on airlines opinion data.
Almost all companies use social media to improve their product services and provide after-sales services that allow their customers to review the quality of their products. By using Twitter social media to be an important source for tracking sentiment analysis. Sentiment analysis is one of the most popular studies today, using sentiment analysis companies can analyze customer satisfaction to improve their services. This study aims to analyze airline sentiments with five different features such as pragmatic, lexical n-gram, POS, sentiment, and LDA using the Support Vector Machine and Maximum Entropy methods. The best results can be obtained using the Maximum Entropy method using all feature extraction with an accuracy of 92.7% and in the Support Vector Machine method, the accuracy obtained is 89.2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.