The species of the genus Populus, collectively known as poplars, are widely distributed over the northern hemisphere and well known for their ecological, economical, and evolutionary importance. The extensive interspecific hybridization and high morphological diversity in this group pose difficulties in identifying taxonomic units for comparative evolutionary studies and systematics. To understand the evolutionary relationships among poplars and to provide a framework for biosystematic classification, we reconstructed a phylogeny of the genus Populus based on nucleotide sequences of three noncoding regions of the chloroplast DNA (intron of trnL and intergenic regions of trnT-trnL and trnL-trnF) and ITS1 and ITS2 of the nuclear rDNA. The resulting phylogenetic trees showed polyphyletic relationships among species in the sections Tacamahaca and Aigeiros. Based on chloroplast DNA sequence data, P. nigra had a close affinity to species of section Populus, whereas nuclear DNA sequence data suggested a close relationship between P. nigra and species of the section Aigeiros, suggesting a possible hybrid origin for P. nigra. Similarly, the chloroplast DNA sequences of P. tristis and P. szechuanica were similar to that of the species of section Aigeiros, while the nuclear sequences revealed a close affinity to species of the section Tacamahaca, suggesting a hybrid origin for these two Asiatic balsam poplars. The incongruence between phylogenetic trees based on nuclear- and chloroplast-DNA sequence data suggests a reticulate evolution in the genus Populus.
Natural hybridization has long been recognized as a means for gene flow between species and has important evolutionary consequences. Although hybridization is generally considered to be symmetrical, with both hybridizing species being equally likely to be the male or female parent, several studies have demonstrated the presence of asymmetrical hybridization and introgression from one species to the other. We investigated the direction of natural hybridization between two sympatric forest tree species in North America ( Populus deltoides Bartr. ex Marsh. and Populus balsamifera L.) using species-specific single nucleotide polymorphism (SNP) markers in both the nuclear and chloroplast genomes. All natural hybrid individuals, identified from morphological traits, had nuclear alleles corresponding to both parental species, while the chloroplast genotypes showed similarity to P. deltoides, indicating asymmetrical hybridization with P. deltoides as the maternal and P. balsamifera as the paternal donor species. This observed asymmetrical hybridization may be attributable to cytonuclear interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.