COMMENT © 2 0 1 7 M a c m i l l a n P u b l i s h e r s L i m i t e d , p a r t o f S p r i n g e r N a t u r e . A l l r i g h t s r e s e r v e d .
BackgroundPreventable adverse drug reactions (PADRs) in inpatients are associated with harm, including increased length of stay and potential loss of life, and result in elevated costs of care. We conducted an overview of reviews (i.e., a systematic review of systematic reviews) to determine the incidence of PADRs experienced by inpatients. Secondary review objectives were related to assessment of the effects of patient age, setting, and clinical specialty on PADR incidence.MethodsThe protocol was registered in PROSPERO (CRD42016043220). We performed a search of Medline, Embase, and the Cochrane Library, limiting languages of publication to English and French. We included published systematic reviews that reported quantitative data on the incidence of PADRs in patients receiving acute or ambulatory care in a hospital setting. The full texts of all primary studies for which PADR data were reported in the included reviews were obtained and data relevant to review objectives were extracted. Quality of the included reviews was assessed using the AMSTAR-2 tool. Both narrative summaries of findings and meta-analyses of primary study data were undertaken.ResultsThirteen systematic reviews encompassing 37 unique primary studies were included. Across primary studies, the PADR incidence was highly varied, ranging from 0.006 to 13.3 PADRs per 100 patients, with a pooled incidence estimate of 0.59 PADRs per 100 patients. Substantial heterogeneity was present across both reviews and primary studies with respect to review/study objectives, patient age, hospital setting, medical discipline, definitions and assessment tools used, event detection methods, endpoints of interest, and units of measure. Thirteen primary studies used prospective event detection methods and had a pooled PADR incidence of 3.13 (2.87–3.38) PADRs per 100 patients; however, extreme statistical heterogeneity (I2 = 97%) indicated this finding should be considered with caution. Subgroup meta-analyses demonstrated that PADR incidence varied significantly with event detection method (prospective > retrospective > voluntary reporting methods), hospital setting (ICU > wards), and medical discipline (medical > surgical). High statistical heterogeneity (I2 > 80%) was present across all analyses, indicating results should be interpreted with caution. Effects of patient age could not be assessed due to poor reporting of age groups used in primary studies.DiscussionThe method of event detection appeared to significantly influence PADR incidence, with prospective methods having the highest reported PADR rate. This finding is in agreement with the background literature. High methodological and statistical heterogeneity across primary studies evaluating adverse drug events reduces the validity of the overall PADR incidence derived from the meta-analyses of the pooled data. Data pooled from studies using only prospective methods of event detection should provide an overall estimate closest to the true PADR incidence; however, our estimate should be considered with caution...
BackgroundA rapid review, guided by a protocol, was conducted to inform development of the World Health Organization’s guideline on personal protective equipment in the context of the ongoing (2013–present) Western African filovirus disease outbreak, with a focus on health care workers directly caring for patients with Ebola or Marburg virus diseases.MethodsElectronic databases and grey literature sources were searched. Eligibility criteria initially included comparative studies on Ebola and Marburg virus diseases reported in English or French, but criteria were expanded to studies on other viral hemorrhagic fevers and non-comparative designs due to the paucity of studies. After title and abstract screening (two people to exclude), full-text reports of potentially relevant articles were assessed in duplicate. Fifty-seven percent of extraction information was verified. The Grading of Recommendations Assessment, Development and Evaluation framework was used to inform the quality of evidence assessments.ResultsThirty non-comparative studies (8 related to Ebola virus disease) were located, and 27 provided data on viral transmission. Reporting of personal protective equipment components and infection prevention and control protocols was generally poor.ConclusionsInsufficient evidence exists to draw conclusions regarding the comparative effectiveness of various types of personal protective equipment. Additional research is urgently needed to determine optimal PPE for health care workers caring for patients with filovirus.
Background Systematic reviews are the cornerstone of evidence-based medicine. However, systematic reviews are time consuming and there is growing demand to produce evidence more quickly, while maintaining robust methods. In recent years, artificial intelligence and active-machine learning (AML) have been implemented into several SR software applications. As some of the barriers to adoption of new technologies are the challenges in set-up and how best to use these technologies, we have provided different situations and considerations for knowledge synthesis teams to consider when using artificial intelligence and AML for title and abstract screening. Methods We retrospectively evaluated the implementation and performance of AML across a set of ten historically completed systematic reviews. Based upon the findings from this work and in consideration of the barriers we have encountered and navigated during the past 24 months in using these tools prospectively in our research, we discussed and developed a series of practical recommendations for research teams to consider in seeking to implement AML tools for citation screening into their workflow. Results We developed a seven-step framework and provide guidance for when and how to integrate artificial intelligence and AML into the title and abstract screening process. Steps include: (1) Consulting with Knowledge user/Expert Panel; (2) Developing the search strategy; (3) Preparing your review team; (4) Preparing your database; (5) Building the initial training set; (6) Ongoing screening; and (7) Truncating screening. During Step 6 and/or 7, you may also choose to optimize your team, by shifting some members to other review stages (e.g., full-text screening, data extraction). Conclusion Artificial intelligence and, more specifically, AML are well-developed tools for title and abstract screening and can be integrated into the screening process in several ways. Regardless of the method chosen, transparent reporting of these methods is critical for future studies evaluating artificial intelligence and AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.