With a growing interest in the application of carbon fibre Sheet Moulding Compound (SMC), a number of commercial software packages have been developed for the simulation of compression moulding of SMC. While these packages adopt different algorithms and meshing strategies, the constitutive material model and processing control are usually adapted from injection moulding process simulation. Little has been done in the literature for assessing the capabilities of these software as design tools, and more importantly, validating the process simulation results using experimental data. This paper aims to provide an independent and comprehensive assessment of existing well-known process simulation software for SMC compression moulding. The selected software will be compared in terms of material models, and available processing settings in order to determine their robustness as a compression moulding design tool. The predictive accuracy of the software will also be assessed by comparing the compression force and filling patterns against the experimental data.
In the present study, the buckling behavior of delaminated plate in woven fabric composite laminates was studied. For this purpose, at first, the structure of woven fabrics was defined as shape functions. Then, the continuous analysis was used to study the bucking of delaminated plates. Based on the Rayleigh–Ritz method, the related formulations were developed to predict the critical buckling load of composite laminates. Three types of woven fabrics (viz. Plain, Twill, and Satin architecture) were used as reinforcements for polyester composites. The 8-ply laminated composites were fabricated using Vacuum Infusion Process (VIP). The results of buckling test showed that the critical buckling loads of laminates reinforced with Plain, Twill, and Satin woven fabrics are 1.35, 1.12, and 1.48 kN, respectively. Also, the results of analytical method are compared with experimental results and those achieved by the finite element method of analysis using ABAQUS software. Compared with experimental results, the maximum error of analytical and FE models is about 17% and 10%, respectively.
The growing popularity of SMC compression moulding in the automotive industry has led to great interests in process simulation model development. Existing process simulation models are commonly adapted from models originally developed for short fibre composites and lacking experimental validation data. A novel material model specifically developed for SMC flow simulation is proposed in this paper, where the experimental material characterisation is performed using the squeeze flow testing method. The model is validated through simulation of the squeeze flow testing and the accuracy of the model is assessed by comparing the predicted compression forces against experimental data collected from the squeeze flow testing. The proposed new model has demonstrated significant improvement in comparison to existing commercial models in term of compression force prediction, but the predicted compressive forces diverted away from the experimental values towards the end of the test. The predicted cavity pressure distribution has also been investigated and compared to observations reported in the literature where good correlation between predicted pressure distribution and the literature have been achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.