Economic pressures continue to mount on modern-day livestock farmers, forcing them to increase herds sizes in order to be commercially viable. The natural consequence of this is to drive the farmer and the animal further apart. However, closer attention to the animal not only positively impacts animal welfare and health but can also increase the capacity of the farmer to achieve a more sustainable production. State-of-the-art precision livestock farming (PLF) technology is one such means of bringing the animals closer to the farmer in the facing of expanding systems. Contrary to some current opinions, it can offer an alternative philosophy to 'farming by numbers'. This review addresses the key technology-oriented approaches to monitor animals and demonstrates how image and sound analyses can be used to build 'digital representations' of animals by giving an overview of some of the core concepts of PLF tool development and value discovery during PLF implementation. The key to developing such a representation is by measuring important behaviours and events in the livestock buildings. The application of image and sound can realise more advanced applications and has enormous potential in the industry. In the end, the importance lies in the accuracy of the developed PLF applications in the commercial farming system as this will also make the farmer embrace the technological development and ensure progress within the PLF field in favour of the livestock animals and their well-being. ImplicationsThis work address the main approaches utilised in developing precision livestock farming tools. Precision livestock farming is an approach that enables the farmer with more objective information about the animal to make better choices about the sustainability of their production system. This paper demonstrates some of the key solutions and the approaches taken to develop technologies with sound and image analyses. †
The aim of the experiment was to study the impact of high ambient temperature (25°C) around farrowing on crated sows unable to perform thermoregulatory behavior. Twenty sows were housed in 2 farrowing rooms in conventional farrowing crates. In 1 room (CONTROL) temperature was kept at 20°C. In the other room (HEAT) temperature was initially kept at 20°C and gradually raised until it reached 25°C from d 112 to 115 of gestation. Then the temperature was gradually lowered to 20°C. Sows were continuously video recorded for behavior recording. Sows' respiration rates were recorded from d 3 before farrowing to d 5 after farrowing. Sows' rectal temperatures were recorded from d 1 before farrowing to d 8 after farrowing, and sows' udder surface temperatures were recorded from the day of farrowing to d 3 after farrowing. All measures were recorded daily. Sows' BW were recorded at d 108 of gestation and at weaning. Sows' back fat was recorded on farrowing day, when room temperature was set again at 20°C, and at weaning. Piglets were weighed at d 1, 14, and 21. The HEAT sows spent a higher proportion of time lying in the lateral position than CONTROL sows, both during the 16 h before farrowing and the 24 h after the start of farrowing ( < 0.05), but with no difference in the amount of time spent lying down between groups ( > 0.10). The HEAT sows had higher rectal temperature on d 1 after farrowing ( < 0.05) and had udder surface temperature 0.9°C higher than that of CONTROL sows during the recording period ( < 0.05). The HEAT sows also tended to have longer farrowing duration ( < 0.10). Respiration rate was higher in HEAT sows on d 1 before farrowing and on the day of farrowing. On d 7, 8, and 9, CONTROL sows had higher feed intake ( < 0.05), and piglets from CONTROL sows were heavier at d 21 after farrowing ( < 0.05). High ambient temperature around farrowing altered sows' postural behavior. Sows reacted to the thermal challenge with higher respiration rate around farrowing, but both their rectal and udder temperatures were elevated, indicating that they were not able to compensate for the higher ambient temperature. High ambient temperature negatively influenced sows' feed intake, with negative impact on piglets' weaning weight. High temperatures around farrowing (25°C) compromise crated sows' welfare, with a potential negative impact on offspring performance.
One challenge of intensive pig production is tail damage caused by tail biting, and farmers often decrease the prevalence of tail damage through tail docking. However, tail docking is not an optimal preventive measure against tail damage and thus, it would be preferable to replace it. The aim of the current study was to investigate the relative effect of three possible preventive measures against tail damage. The study included 112 pens with 1624 finisher pigs divided between four batches. Pens were randomly assigned to one level of each of three treatments: (1) tail-docked (n=60 pens) v. undocked (n=52 pens), (2) 150 g of straw provided per pig per day on the solid floor (n=56 pens) v. no straw provided (n=56 pens), (3) stocking density of 1.21 m2/pig (11 pig/pen; n=56 pens) v. 0.73 m2/pig (18 pigs/pen; n=56 pens). Tail damage was recorded three times per week throughout the finisher period by scoring the tail of each individual pig. A pen was recorded as a tail damage pen and no longer included in the study if at least one pig in a pen had a bleeding tail wound; thus, only the first incidence of tail damage on pen level was recorded. Data were analysed by a Cox regression for survival analysis assuming proportional hazards. Results are presented as hazards, and a higher hazard means that a pen has a higher risk of tail damage and of it happening earlier in the finisher period. Pens with undocked pigs had a 4.32-fold higher hazard of tail damage compared with pens with docked pigs (P<0.001). Pens with no straw provided had a 2.22-fold higher hazard of tail damage compared with pens with straw provided (P<0.01). No interactions was seen between the treatments, but the effect of tail docking was higher than the effect of straw provision (P<0.001). Stocking density did not have a significant effect on the hazard of tail damage (hazard rate ratios (HRR)=1.67; P=0.064). However, a combination of straw provision and lowered stocking density showed a similar hazard of tail damage as seen with only tail docking (HRR=1.58; P=0.39). In conclusion, tail docking and straw provision were preventive measures against tail damage, and tail docking reduced the risk more than straw provision. A combination of other preventive measures is necessary to reduce the risk of tail damage in undocked pigs to the same level as in docked pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.