Hydrops Fetalis (HF), accumulation of fluid in two or more fetal compartments, is life-threatening to the fetus. Genetic etiologies include many chromosomal and monogenic disorders. Despite this, the clinical workup typically evaluates limited genetic targets. To support broader molecular testing of pregnancies with HF, we cataloged the spectrum of monogenic disorders associated with nonimmune hydrops fetalis (NIHF). We performed a systematic literature review under PROSPERO tag CRD42018099495 of cases reporting NIHF meeting strict phenotypic criteria and well-defined genetic diagnosis. We ranked the evidence per gene based on number of reported cases, phenotype and molecular/biochemical diagnosis. We identified 131 genes with strong evidence for an association with NIHF and 46 genes with emerging evidence spanning the spectrum of multisystem syndromes, cardiac disorders, hematologic disorders, and metabolic disorders. Several genes previously implicated with NIHF did not have any reported cases in the literature with both fetal hydrops and molecular diagnosis. Many genes with strong evidence for association with NIHF would not be detected using current sequencing panels. Nonimmune HF has many possible monogenic etiologies, several with treatment implications, but current diagnostic approaches are not exhaustive. Studies are needed to assess if broad sequencing approaches like whole exome sequencing are useful in clinical management of HF.
Objectives: Nonimmune hydrops fetalis (NIHF) accounts for 90% of hydrops fetalis cases. About 15% to 29% of unexplained NIHF cases are caused by lysosomal storage diseases (LSD). We review the spectrum of LSD and associated clinical findings in NIHF in a cohort of patients referred to our institution. Methods:We present a retrospective case-control study of cases with NIHF referred for LSD biochemical testing at a single center. Cases diagnosed with LSD were matched to controls with NIHF and negative LSD testing and analyzed according to the STROBE criteria to the extent the retrospective nature of this study allowed. patients with NIHF were diagnosed with a LSD. Eight types of LSD were diagnosed: galactosialidosis 8/28 (28.6%), sialic acid storage disease (SASD) 5/28 (17.9%), mucopolysaccharidosis VII 5/28 (17.9%), Gaucher 4/28 (14.3%), sialidosis 2/28 (7.1%), GM1 gangliosidosis 2/28 (7.1%), Niemann-Pick disease type C 1/28 (3.6%), and mucolipidosis II/III 1/28 (3.6%). Associated clinical features were hepatomegaly 16/21 (76.2%) vs 22/65 (33.8%), P < .05, splenomegaly 12/20 (60.0%) vs 14/58 (24.1%), P < .05, and hepatosplenomegaly 10/20 (50.0%) vs 13/58 (22.4%) P < .05. Conclusion:The most common LSD in NIHF were galactosialidosis, SASD, mucopolysaccharidosis VII, and Gaucher disease. LSD should be considered in unexplained NIHF cases, particularly if hepatomegaly, splenomegaly, or hepatosplenomegaly is visualized on prenatal ultrasound.
Non‐immune hydrops fetalis (NIHF) has multiple genetic etiologies diagnosable by exome sequencing (ES). We evaluated the yield of prenatal ES for NIHF, and the contribution of additional clinical findings and history. Systematic review was performed with PROSPERO tag 232951 using CINAHL, PubMed, and Ovid MEDLINE from January 1, 2000 through December 1, 2021. Selected studies performed ES to augment standard prenatal diagnostic approaches. Cases meeting a strict NIHF phenotype were tabulated with structured data imputed from papers or requested from authors. Genetic variants and diagnostic outcomes were harmonized across studies using current ACMG and ClinGen variant classification guidelines. Thirty‐one studies reporting 445 NIHF cases had a 37% (95% CI: 32%–41%) diagnostic rate. There was no significant difference between isolated NIHF and NIHF with fetal malformations or between recurrent and simplex cases. Diagnostic rate was higher for consanguineous than non‐consanguineous cases. Disease categories included RASopathies (24%), neuromuscular (21%), metabolic (17%), lymphatic (13%), other syndromes (9%), cardiovascular (5%), hematologic (2%), skeletal (2%), and other categories (7%). Inheritance patterns included recessive (55%), dominant (41%), and X‐linked (4%). ES should be considered in the diagnostic workup of NIHF with and without associated ultrasound findings regardless of history of recurrence or consanguinity.
Numerous etiologies may lead to nonimmune hydrops fetalis (NIHF) including congenital disorders of glycosylation (CDG). Recognition of CDG in NIHF is challenging. This study reviews prenatal and neonatal characteristics of CDG presenting with NIHF. A systematic literature search was performed. Thirteen articles met the inclusion criteria. Twenty‐one cases with NIHF associated with a CDG were reported. There were 17 live births, three pregnancy terminations, and one fetal demise. Timing of CDG diagnosis was reported mostly postnatally (90%; 10/11). Postnatal genetic testing was reported in 18 patients; three patients were diagnosed by isoelectric focusing of serum transferrin that showed a type 1 pattern. The genes reported for CDG with NIHF for 15 distinct families include: PMM2 in 47% (7/15), ALG9 in 20% (3/15), ALG8 in 13% (2/15), ALG1 in 7% (1/15), MGAT2 in 7% (1/15), and COG6 7% (1/15). In our review, 81% (17/21) reported facial dysmorphism, 52% (11/21) reported CNS abnormalities, most commonly cerebellar atrophy (64%; 7/11), and 38% (8/21) reported cardiovascular abnormalities, most commonly hypertrophic cardiomyopathy (63%; 5/8). Among live births, 71% (12/17) infants died at a median age of 34 days (range 1‐185). Thrombocytopenia was reported in 53% (9/17) patients. Of those who survived past the neonatal period, 80% (4/5) had significant reported developmental delays. CDG should be on the differential diagnosis of NIHF in the presence of cerebellar atrophy, hypertrophic cardiomyopathy, or thrombocytopenia. Our review highlights the poor prognosis in infants with NIHF due to CDG and demonstrates the importance of identifying these disorders prenatally to guide providers in their counseling with families regarding pregnancy management. Synopsis Poor prognosis in fetuses and infants with nonimmune hydrops fetalis due to congenital disorders of glycosylation highlights the importance of prenatal diagnosis of this disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.