BackgroundColorectal cancer (CRC) remains a leading cause of death worldwide. Utilizing cisplatin in CRC is correlated with severe adverse effects and drug-resistance. Combined anticancer drug-treatment, along with, their enhanced delivery, can effectively kill cancer through multiple pathways. Nano-cubosomes are emerging as nanocarriers for anticancer therapies, hence, we constructed nano-cubosomes bearing cisplatin and cisplatin-metformin combination for investigation on HCT-116 cells.MethodsNano-cubosomes bearing either cisplatin alone or cisplatin-metformin combination were formulated using emulsification technique. The loaded nano-cubosomes were characterized in vitro and the optimized formulation was selected. Their cytotoxic effects were investigated by Sulphorhodamine-B (SRB) assay. The AMPK/mTOR metabolic pathway as well as the Akt/mTOR pathway were analyzed using ELISA technique. Colorimetry was used in NADPH oxidase, LDH and caspase-3 activity determination.Resultsnano-cubosomal formulations exhibited superior cytotoxic effect compared to unformulated cisplatin. This cytotoxic effect was profound upon incorporation of metformin, an indirect mTOR inhibitor, in cisplatin nano-cubosomes. The induced CRC cell apoptosis was through inhibition of several metabolic pathways, namely, AMPK/mTOR and Akt/mTOR. Drug-loaded nano-cubosomes ensued depletion in glucose and energy levels that led to AMPK activation and thus mTOR inhibition. mTOR was additionally inhibited via suppression of p-Akt (Ser473) levels after nano-cubosomal treatment. Moreover, drug-loaded nano-cubosomes produced a notable escalation in ROS levels, evident as an increase in NADPH oxidase, inhibition of LDH and a consequential upsurge in caspase-3.ConclusionThese results demonstrated the influence exerted by cisplatin-loaded nano-cubosomes on CRC cell survival and enhancement of their cytotoxicity upon metformin addition.
BackgroundThe link between inflammation and cancer has been confirmed by the use of anti-inflammatory therapies in cancer prevention and treatment. 5-aminosalicylic acid (5-ASA) was shown to decrease the growth and survival of colorectal cancer (CRC) cells. Studies also revealed that metformin induced apoptosis in several cancer cell lines.MethodsWe investigated the combinatory effect of 5-ASA and metformin on HCT-116 and Caco-2 CRC cell lines. Apoptotic markers were determined using western blotting. Expression of pro-inflammatory cytokines was determined by RT-PCR. Inflammatory transcription factors and metastatic markers were measured by ELISA.ResultsMetformin enhanced CRC cell death induced by 5-ASA through significant increase in oxidative stress and activation of apoptotic machinery. Moreover, metformin enhanced the anti-inflammatory effect of 5-ASA by decreasing the gene expression of IL-1β, IL-6, COX-2 and TNF-α and its receptors; TNF-R1 and TNF-R2. Significant inhibition of activation of NF-κB and STAT3 transcription factors, and their downstream targets was also observed. Metformin also enhanced the inhibitory effect of 5-ASA on MMP-2 and MMP-9 enzyme activity, indicating a decrease in metastasis.ConclusionThe current data demonstrate that metformin potentiates the antitumor effect of 5-ASA on CRC cells suggesting their potential use as an adjuvant treatment in CRC.
Damage to human skin occurs either chronologically or through repetitive exposure to ultraviolet (UV) radiation, where collagen photodegradation leads to the formation of wrinkles and skin imperfections. Consequently, cosmeceutical products containing natural bioactives to restore or regenerate collagen have gained a remarkable attention as an ameliorative remedy. Methods: This study aimed to develop and optimize collagen-loaded water-in-oil nanoemulsion (W/O NE) through a D-optimal mixture design to achieve an ideal multifunctional nanosystem containing active constituents. Vit E was included as a constituent of the formulation for its antioxidant properties to minimize the destructive impact of UV radiation. The formulated systems were characterized in terms of their globule size, optical clarity, and viscosity. An optimized system was selected and evaluated for its physical stability, in vitro wound healing properties, and in vivo permeation and protection against UV radiation. In addition, the effect of collagen-loaded NE was compared to Vit C-loaded NE and collagen-/Vit C-loaded NEs mixture as Vit C is known to enhance collagen production within the skin. Results: The optimized NE was formulated with 25% oils (Vit E: safflower oil, 1:3), 54.635% surfactant/cosurfactant (Span 80: Kolliphor EL: Arlasolve, 1:1:1), and 20.365% water. The optimized NE loaded with either collagen or Vit C exhibited a skin-friendly appearance with boosted permeability, and improved cell viability and wound healing properties on fibroblast cell lines. Moreover, the in vivo study and histopathological investigations confirmed the efficacy of the developed system to protect the skin against UV damage. The results revealed that the effect of collagen-/Vit C-loaded NEs mixture was more pronounced, as both drugs reduced the skin damage to an extent that it was free from any detectable alterations. Conclusion: NE formulated using Vit E and containing collagen and/or Vit C could be a promising ameliorative remedy for skin protection against UVB irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.