Cancer cells have extra biosynthetic demands to sustain cell growth and redox homeostasis. Glycolysis and autophagy are crucial to fuel and recycle these biosynthetic demands. This plasticity of cancer cell metabolism participates in therapy resistances. The current study was designed to assess the therapeutic efficacy of dual targeting of glycolysis and autophagy in cancer. Using 3‐bromopyruvate (3‐BP; antiglycolytic inhibitor) and hydroxychloroquine (HCQ; autophagy inhibitor), we demonstrate their antitumor activity in Ehrlich ascites carcinoma (EAC)‐bearing mice. A combination of 3‐BP and HCQ significantly decreases tumor ascitic volume and cell count as compared with the EAC group and individual treatment groups. The enhanced antitumor activity is accompanied by hexokinase inactivation, inhibition of cellular protective autophagy, elevated antioxidant activity, and reduced oxidative stress levels. Together, these results suggest targeting both pathways in cancer as an effective therapeutic strategy. Further studies are required to validate this strategy in different cancer models and preclinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.