Reverse osmosis (RO) membranes based on cellulose acetate (CA), were prepared using a phase inversion technique. To improve the hydrophilicity, salt rejection and water flux of these membranes, a novel grafting of 2-acrylamido-2-methylpropanesulfonic acid (AMPSA) was added on the top surface of the CA-RO membranes. The grafted CA-RO membranes were characterized by Fourier transform infrared spectroscopy (FTIR), contact angle, and scanning electron microscopy techniques. It was found that the contact angles were 58° and 45° for pristine CA and 15 wt% grafted CA-RO membranes, respectively, which suggest an increase in the membrane surface hydrophilicity after grafting. The morphological studies of the surface of the pristine CA-RO membrane revealed a typical ridge-and-valley morphology and displayed a relatively high surface roughness of 337 nm, and a significant decrease at 15 wt% of grafted CA-RO membrane to 7 nm. The effect of the grafting percentages of AMPSA on the water flux and salt rejection was studied using a cross flow RO unit. The salt rejection and water flux of the grafted CA-RO membrane with 15 wt% were 99.03% and 6 L/m2h, respectively.
The replenishment of aquifers depends mainly on precipitation rates, which is of vital importance for determining water budgets in arid and semi-arid regions. El-Qaa Plain in the Sinai Peninsula is a region that experiences constant population growth. This study compares the performance of two sets of satellite-based data of precipitation and in situ rainfall measurements. The dates selected refer to rainfall events between 2015 and 2018. For this purpose, 0.1° and 0.25° spatial resolution TMPA (Tropical Rainfall Measurement Mission Multi-satellite Precipitation Analysis) and IMERG (Integrated Multi-satellite Retrievals for Global Precipitation Measurement) data were retrieved and analyzed, employing appropriate statistical metrics. The best-performing data set was determined as the data source capable to most accurately bridge gaps in the limited rain gauge records, embracing both frequent light-intensity rain events and more rare heavy-intensity events. With light-intensity events, the corresponding satellite-based data sets differ the least and correlate more, while the greatest differences and weakest correlations are noted for the heavy-intensity events. The satellite-based records best match those of the rain gauges during light-intensity events, when compared to the heaviest ones. IMERG data exhibit a superior performance than TMPA in all rainfall intensities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.