Mutations in the synaptic nuclear envelope protein 1 (SYNE1) gene have been reported to cause a relatively pure, slowly progressive cerebellar recessive ataxia mostly identified in Quebec, Canada. Combining next-generation sequencing techniques and deep-phenotyping (clinics, magnetic resonance imaging, positron emission tomography, muscle histology), we here established the frequency, phenotypic spectrum and genetic spectrum of SYNE1 in a screening of 434 non-Canadian index patients from seven centres across Europe. Patients were screened by whole-exome sequencing or targeted panel sequencing, yielding 23 unrelated families with recessive truncating SYNE1 mutations (23/434 = 5.3%). In these families, 35 different mutations were identified, 34 of them not previously linked to human disease. While only 5/26 patients (19%) showed the classical SYNE1 phenotype of mildly progressive pure cerebellar ataxia, 21/26 (81%) exhibited additional complicating features, including motor neuron features in 15/26 (58%). In three patients, respiratory dysfunction was part of an early-onset multisystemic neuromuscular phenotype with mental retardation, leading to premature death at age 36 years in one of them. Positron emission tomography imaging confirmed hypometabolism in extra-cerebellar regions such as the brainstem. Muscle biopsy reliably showed severely reduced or absent SYNE1 staining, indicating its potential use as a non-genetic indicator for underlying SYNE1 mutations. Our findings, which present the largest systematic series of SYNE1 patients and mutations outside Canada, revise the view that SYNE1 ataxia causes mainly a relatively pure cerebellar recessive ataxia and that it is largely limited to Quebec. Instead, complex phenotypes with a wide range of extra-cerebellar neurological and non-neurological dysfunctions are frequent, including in particular motor neuron and brainstem dysfunction. The disease course in this multisystemic neurodegenerative disease can be fatal, including premature death due to respiratory dysfunction. With a relative frequency of ∼5%, SYNE1 is one of the more common recessive ataxias worldwide.
Measurements of tumoral VVF at high-resolution MR imaging with long-circulating iron oxide are feasible and correlate with angiogenic burden in experimental tumor models.
Sensitive in vivo imaging technologies applicable to the clinical setting are still lacking for adoptive T-cell-based immunotherapies, an important gap to fill if mechanisms of tumor rejection or escape are to be understood. Here, we propose a highly sensitive imaging technology to track human TCR-transgenic T cells in vivo by directly targeting the murinized constant TCR beta domain (TCRmu) with a zirconium-89 ( 89 Zr)-labeled anti-TCRmu-F(ab') 2 fragment. Binding of the labeled or unlabeled F(ab') 2 fragment did not impair functionality of transgenic T cells in vitro and in vivo. Using a murine xenograft model of human myeloid sarcoma, we monitored by Immuno-PET imaging human central memory T cells (T CM ), which were transgenic for a myeloid peroxidase (MPO)-specific TCR. Diverse T-cell distribution patterns were detected by PET/CT imaging, depending on the tumor size and rejection phase. Results were confirmed by IHC and semiquantitative evaluation of T-cell infiltration within the tumor corresponding to the PET/CT images. Overall, these findings offer a preclinical proof of concept for an imaging approach that is readily tractable for clinical translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.