Thermal-Energy Storage (TES) properties of organic phase change materials have been experimentally investigated and reported in this paper. Three paraffin-based Phase Change Materials (PCMs) and one bio-based PCM are considered with melting temperatures of 24 °C, 25 °C and 26 °C. Sensible heat storage capacities, melting characteristics and latent heat enthalpies of the studied PCMs are investigated through Differential Scanning Calorimetry (DSC) measurements. Two alternative methods, namely the classical dynamic DSC and a stepwise approach, are performed and compared with the aim to eliminate and/or overcome possible measurement errors. In particular, for DSC measurements this could be related to the size of the samples and its representativity, heating rate effects and low thermal conductivity of the PCMs, which may affect the results and possibly cause a loss of objectivity of the measurements. Based on results achieved from this study, clear information can be figured out on how to conduct and characterize paraffin and bio-based PCMs, and how to apply them in TES calculations for building applications and/or simulations. It is observed that both paraffinic and bio-based PCMs possess a comparable TES capacity within the selected phase transition temperature, being representative for the human thermal comfort zone. The phase change of bio-based PCMs occurred over a much narrower temperature range when compared to the wider windows characterizing the paraffin-based materials. Bio-based PCMs turned out to be very suitable for building applications and can be an environmentally friendly substitute for petroleum-based PCMs.
This paper reports a numerical approach for modelling the thermal behavior and heat accumulation/liberation of sustainable cementitious composites made with Recycled Brick Aggregates (RBAs) employed as carriers for Phase-Change Materials (PCMs). In the framework of the further development of the fixed grid modelling method, classically employed for solving the well-known Stefan problem, an enthalpy-based approach and an apparent calorific capacity method have been proposed and validated. More specifically, the results of an experimental program, following an advanced incorporation and immobilization technique, developed at the Institut für Werkstoffe im Bauwesen for investigating the thermal responses of various combinations of PCM-RBAs, have been considered as the benchmark to calibrate/validate the numerical results. Promising numerical results have been obtained, and temperature simulations showed good agreement with the experimental data of the analyzed mixtures.
The growing global energy demand requires solutions that improve energy efficiency in all sectors. The civil construction sector is responsible for a large part of global energy consumption. In this context, phase change materials (PCMs) can be incorporated into construction materials to improve the energy efficiency of buildings. The purpose of this study was to incorporate a PCM to jute fabric, applying it in civil construction as a reinforcement for cement matrices. In order to do that, a method of immersing jute fabric in liquid phase change material, and then coating it with a polymer, was proposed. Treated jute fabric was then used to produce a laminated composite with a cementitious matrix. Morphological, mechanical and chemical characterization of jute textiles was performed, as well as an analysis of the composites’ mechanical and thermal behavior. The results verified that jute textiles absorbed 102% PCM in weight, which was successfully contained in the capillary porosity of jute. The PCM was able to delay the composite’s temperature increase by up to 24 °C. It was concluded that this method can be used to incorporate PCM to natural textiles, producing composites with thermal energy storage properties.
Thermal-Energy Storage (TES) properties of organic phase change materials have been experimentally investigated and reported in this paper. Three paraffin-based PCMs and one bio-based one are considered with melting temperatures of 24 °C, 25 °C and 26 °C. Sensible heat storage capacities, melting characteristics and latent heat enthalpies are investigated through DSC measurements. Two alternative methods, namely the classical dynamic and the step-wise approach, are performed and compared with the aim to eliminate and/or overcome possible measurement DSC errors. The latters are due to the size of the samples and their representativity, heating/cooling rate effects and the low conductivity of the PCMs, which may affect the results and possibly cause a loss of objectivity of the measurements. Based on results achieved from this study, clear informations can be figured out on how to conduct and characterize paraffin and bio-based PCMs, and possible how to apply them in TES calculations for building applications and/or simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.