LowGC-type plasmids conferring resistance to sulfonamides have been frequently isolated from manure and manured soil. However, knowledge on the dynamics of plasmid-carrying populations in soil and their response to the presence of sulfonamides is scarce. Here, we investigated effects of the sulfonamide resistance conferring plasmid pHHV216 on the fitness of Acinetobacter baylyi BD413 in soil after application of manure with or without the sulfonamide antibiotic sulfadiazine (SDZ). The persistence of A. baylyi BD413 pHHV216 in competition to its plasmid-free variant was followed in soil microcosms. CFU counts showed a decrease in A. baylyi BD413 in manured soils over the experimental period of 32 days by about 0.5 log units. The proportion of the plasmid-carrying populations decreased from 50 to < 40% in the absence of SDZ, while the proportion of plasmid-carrying BD413 increased from 50 to about 65% with SDZ added. The data suggest that SDZ introduced via manure into soil was bioaccessible, providing a fitness advantage for the plasmid-carrying population of BD413 in soil, while the plasmid conferred a fitness disadvantage when selective pressure by SDZ was absent. In future, this method may be used as a tool for the assessment of bioavailability of antibiotics in soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.