To determine whether population differentiation in flowering time is consistent with differences in current selection, we quantified phenotypic selection acting through female reproductive success on flowering phenology and floral display in two Scandinavian populations of the outcrossing, perennial herb Arabidopsis lyrata in two years. One population was located in an alpine environment strongly affected by grazing, whereas the other was close to sea level and only moderately affected by herbivory. Multiple regression models indicated directional selection for early end of flowering in one year in the lowland population, and directional selection for early start of flowering in one year in the alpine population. As expected, there was selection for more inflorescences in the lowland population. However, in the alpine population, plants with many inflorescences were selectively grazed and the number of inflorescences produced was negatively related to female fitness in one year and not significantly related to female fitness in the second year. The results are consistent with the hypothesis that genetic differentiation in flowering phenology between the study populations is adaptive, and indicate that interactions with selective grazers may strongly influence selection on floral display in A. lyrata.
Arabidopsis lyrata (Brassicaceae) is a close outcrossing relative of A. thaliana. We examine flowering time variation of northern and southern A. lyrata populations in controlled environmental conditions, in a common garden experiment with A. thaliana, and in the field. Southern populations of A. lyrata flowered earlier than northern ones in all environmental conditions. Individuals from southern populations were more likely to flower in short days (14 h light) than northern ones, and all populations had a higher probability of flowering and flowered more rapidly in long days (20 h). The interaction of population and day length significantly affected flowering probability, and flowering time in one of two comparisons. The common garden experiment demonstrated differences between populations in the response to seed cold treatment, but growth chamber experiments showed no vernalization effect after 4 wk of rosette cold treatment. In a field population in Norway, a high proportion of the plants flowered in each year of the study. The plants progressed to flowering more rapidly in the field and common garden than in the growth chamber. The genetic basis of these flowering time differences here can be further studied using A. thaliana genetic tools.
Arabidopsis thaliana has emerged as a model organism for plant developmental genetics, but it is also now being widely used for population genetic studies. Outcrossing relatives of A. thaliana are likely to provide suitable additional or alternative species for studies of evolutionary and population genetics. We have examined patterns of adaptive flowering time variation in the outcrossing, perennial A. lyrata. In addition, we examine the distribution of variation at marker genes in populations form North America and Europe. The probability of flowering in this species differs between southern and northern populations. Northern populations are much less likely to flower in short than in long days. A significant daylength by region interaction shows that the northern and southern populations respond differently to the daylength. The timing of flowering also differs between populations, and is made shorter by long days, and in some populations, by vernalization. North American and European populations show consistent genetic differentiation over microsatellite and isozyme loci and alcohol dehydrogenase sequences. Thus, the patterns of variation are quite different from those in A. thaliana, where flowering time differences show little relationship to latitude of origin and the genealogical trees of accessions vary depending on the genomic region studied. The genetic architecture of adaptation can be compared in these species with different life histories.
Arabidopsis thaliana has emerged as a model organism for plant developmental genetics, but it is also now being widely used for population genetic studies. Outcrossing relatives of A. thaliana are likely to provide suitable additional or alternative species for studies of evolutionary and population genetics. We have examined patterns of adaptive flowering time variation in the outcrossing, perennial A. lyrata. In addition, we examine the distribution of variation at marker genes in populations form North America and Europe. The probability of flowering in this species differs between southern and northern populations. Northern populations are much less likely to flower in short than in long days. A significant daylength by region interaction shows that the northern and southern populations respond differently to the daylength. The timing of flowering also differs between populations, and is made shorter by long days, and in some populations, by vernalization. North American and European populations show consistent genetic differentiation over microsatellite and isozyme loci and alcohol dehydrogenase sequences. Thus, the patterns of variation are quite different from those in A. thaliana, where flowering time differences show little relationship to latitude of origin and the genealogical trees of accessions vary depending on the genomic region studied. The genetic architecture of adaptation can be compared in these species with different life histories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.