Chitosan films are increasingly being applied in the biomedical field owing to their biocompatibility, biodegradability, non-toxicity, mucoadhesive nature, hemostatic properties, antibacterial and biological activities. This study aimed to enhance the mechanical properties of chitosan films by doping niosomal sage nanoparticles (NS-SagNPs) at various concentrations (100-300 μg). The NS-SagNPs were prepared by a thin-film hydration process with an average particle size of 21.5 nm. The doped chitosan films were fabricated through a simple casting method. FTIR and DSC measurements confirmed the successful incorporation of NS-SagNPs in the chitosan films. The mechanical properties of the doped films were improved and the most significant improvement was found in tensile strength and elasticity when the NS-SagNPs loading was increased to 300 μg. Based on these results, chitosan films doped with NS-SagNPs have the advantageous feature of sage and show enhanced mechanical properties compared with pure chitosan, rendering them more suitable for biomedical applications.
There is a trend to use nanoparticles as distinct treatments for cancer treatment because they have overcome many of the limitations of traditional drug delivery systems. Gallic acid (GA) is an effective polyphenol in the treatment of tissue injuries. In this study, GA was loaded onto niosomes to produce gallic acid nanoemulsion (GANE) using a green synthesis technique. GANE's efficiency, morphology, UV absorption, release, and Fourier-transform infrared spectroscopy (FTIR) analysis were evaluated. An in vitro study was conducted on the A549 lung carcinoma cell line to determine the GANE cytotoxicity. Also, our study was extended to evaluate the protective effect of GANE against lipopolysaccharide (LPS)-induced pulmonary fibrosis in rats. GANE showed higher encapsulation efficiency and strong absorption at 280 nm. Transmission electron microscopy presented a spherical shape of the prepared nanoparticles, and FTIR demonstrated different spectra for the free gallic acid sample compared to GANE. GANE showed cytotoxicity for the A549 carcinoma lung cell line with a low IC 50 value. It was found that oral administration of GANE at 32.8 and 82 mg/kg.b.w. and dexamethasone (0.5 mg/kg) provided significant protection against LPS-induced pulmonary fibrosis. GANE enhanced production of superoxide dismutase, GPx, and GSH. It simultaneously reduced the MDA level. The GANE and dexamethasone, induced the production of IL-4, but suppressed TNF-α and IL-6. On the other hand, the lung p38MAPK, TGF-β1, and NF-κB gene expression was downregulated in rats administrated with GANE when compared with the LPS-treated rats. Histological studies confirmed the effective effect of GANE as it had a lung-protective effect against LPS-induced lung fibrosis. It was noticed that GANE can inhibit oxidative stress, lipid peroxidation, and cytokines and downregulate p38MAPK, TGF-β1, and NF-κB gene expression to suppress the proliferation and migration of lung fibrotic cells.
It is concluded that there are two different mechanisms of interaction between positive electric pulse and microorganism occurred; 0.5 Hz caused rupture in cell wall while 0.7 Hz caused denaturation of the inner consistent of the cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.