Cellular interactions between activated microglia and degenerating neurons in in vivo models of Parkinson’s disease are not well defined. This time course study assesses the dynamics of morphological and immunophenotypic properties of activated microglia in a 6‐hydroxydopamine (6‐OHDA) model of Parkinson’s disease. Neurodegeneration in the substantia nigra pars compacta (SNc) was induced by unilateral injection of 6‐OHDA into the medial forebrain bundle. Activated microglia, identified using monoclonal antibodies: clone of antibody that detects major histocompatibility complex (MHC) class II antigens (OX6) for MHC class II, clone of antibody that detects cell surface antigen‐cluster of differentiation 11b – anti‐complement receptor 3, a marker for complement receptor 3 and CD 68 for phagocytic activity. Activation of microglia in the lesioned SNc was rapid with cells possessing amoeboid or ramified morphology appeared on day 1, whilst antibody clone that detects macrophage‐myeloid associated antigen immunoreactivity was observed at day 3 post‐lesion when there was no apparent loss of tyrosine hydroxylase (TH)+ve dopaminergic (DA) SNc neurons. Thereafter, OX6 and antibody clone that detects macrophage‐myeloid associated antigen activated microglia selectively adhered to degenerating axons, dendrites and apoptotic (caspase 3+ve) DA neurons in the SNc were observed at day 7. This was followed by progressive loss of TH+ve SNc neurons, with the peak of TH+ve cell loss (51%) being observed at day 9. This study suggests that activation of microglia precedes DA neuronal cell loss and neurons undergoing degeneration may be phagocytosed prematurely by phagocytic microglia.
Sustained reactive microgliosis may contribute to the progressive degeneration of nigral dopaminergic neurons in Parkinson's disease (PD), in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exposed human and in non-human primates. However, the temporal relationship between glial cell activation and nigral cell death is relatively unexplored. Consequently, the effects of acute (24 h) and chronic (30 days) glial cell activation induced by unilateral supranigral lipopolysaccharide (LPS) administration were studied in rats. At 24 h, LPS administration caused a marked reduction in the number of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the substantia nigra (SN) but striatal TH-ir was unaffected. By 30 days, the loss of TH-positive neurons in the LPS-treated nigra was no greater than at 24 h although a heterogeneous loss of striatal TH-ir was present. The loss of nigrostriatal neurons was of functional significance, as at 30 days, LPS-treated rats exhibited ipsiversive circling in response to (+)-amphetamine administration. At 24 h, there was a moderate increase in glial fibrillary acidic protein (GFAP)-ir astrocytes in the SN but a marked elevation of p47phox positive OX-42-ir microglia, and intense inducible nitric oxide synthase (iNOS)-ir and 3-nitrotyrosine (3-NT)-ir was present. However, by 30 days the morphology of OX-42-ir microglia returned to a resting state, the numbers were greatly reduced and no 3-NT-ir was present. At 30 days, GFAP-ir astrocytes were markedly increased in number and iNOS-ir was present in fibrillar astrocyte-like cells. This study shows that acute glial activation leading to dopaminergic neuron degeneration is an acute short-lasting response that does not itself perpetuate cell death or lead to prolonged microglial activation.
Neuroinflammation can cause major neurological dysfunction, without demyelination, in both multiple sclerosis (MS) and a mouse model of the disease (experimental autoimmune encephalomyelitis; EAE), but the mechanisms remain obscure. Confocal in vivo imaging of the mouse EAE spinal cord reveals that impaired neurological function correlates with the depolarisation of both the axonal mitochondria and the axons themselves. Indeed, the depolarisation parallels the expression of neurological deficit at the onset of disease, and during relapse, improving during remission in conjunction with the deficit. Mitochondrial dysfunction, fragmentation and impaired trafficking were most severe in regions of extravasated perivascular inflammatory cells. The dysfunction at disease onset was accompanied by increased expression of the rate-limiting glycolytic enzyme phosphofructokinase-2 in activated astrocytes, and by selective reduction in spinal mitochondrial complex I activity. The metabolic changes preceded any demyelination or axonal degeneration. We conclude that mitochondrial dysfunction is a major cause of reversible neurological deficits in neuroinflammatory disease, such as MS.
Observations of nerve axons in vivo reveal that electrical activity increases the number and speed of transported mitochondria, showing how sudden increases in energy demand may be satisfied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.