Debnath and De La Sen introduced the notion of set valued interpolative Hardy-Rogers type contraction mappings on b-metric spaces and proved that on a complete b-metric space, whose all closed and bounded subsets are compact, the set valued interpolative Hardy-Rogers type contraction mapping has a fixed point. This article presents generalizations of above results by omitting the assumption that all closed and bounded subsets are compact.
We propose and analyze an inertial iterative algorithm to approximate a common solution of generalized equilibrium problem, variational inequality problem, and fixed point problem in the framework of a 2-uniformly convex and uniformly smooth real Banach space. Further, we study the convergence analysis of our proposed iterative method. Finally, we give application and a numerical example to illustrate the applicability of the main algorithm.
In this manuscript, a new family of contractions called Jaggi-type hybrid
G
−
ϕ
-contraction is introduced and some fixed point results in generalized metric space that are not deducible from their akin in metric space are obtained. The preeminence of this class of contractions is that its contractive inequality can be extended in a variety of manners, depending on the given parameters. Consequently, several corollaries that reduce our result to other well-known results in the literature are highlighted and analyzed. Substantial examples are constructed to validate the assumptions of our obtained theorems and to show their distinction from corresponding results. Additionally, one of our obtained corollaries is applied to set up unprecedented existence conditions for the solution of a family of integral equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.