Background: COVID-19 is still causing victims with long-term health consequences, mass deaths, and collapsing healthcare systems around the world. The disease has no efficient drugs. However, previous studies revealed that SARS-CoV-2 and SARS-CoV have 96% and 86.5% similarities in cysteine proteases (3CLpro) and papain-like protease (PLpro) sequences, respectively. This resemblance could be significant in the search for drug candidates with antiviral effects against SARS-CoV-2. Objective: This paper is a compilation of natural products that inhibit SARS-CoV 3CLpro and PLpro and, concomitantly, reduce inflammation and/or modulate the immune system as a perspective strategy for COVID-19 drug discovery. It also presents in silico studies performed on these selected natural products using SARS-CoV-2 3CLpro and PLpro as targets to propose a list of hit compounds. Method: The plant metabolites were selected in the literature based on their biological activities on SARS-CoV proteins, inflammatory mediators, and immune response. The consensus docking analysis was performed using four different packages. Results: Seventy-nine compounds reported in the literature with inhibitory effects on SARS-CoV proteins were reported as anti-inflammatory agents. Fourteen of them showed in previous studies immunomodulatory effects. Five and six of these compounds showed significant in silico consensus as drug candidates that can inhibit PLpro and 3CLpro, respectively. Our findings corroborated recent results reported on anti-SARS-CoV-2 in the literature. Conclusion: This study revealed that amentoflavone, rubranoside B, savinin, psoralidin, hirsutenone, and papyriflavonol A are good drug candidate for the search of antibiotics against COVID-19.
BACKGROUND: Citrus fruits are a rich source of valuable molecules, and their industrial processing produces bagasses, little explored to generate important by-products. These Citrus residues, including seeds and peels, also contain numerous pharmacologically important substances. To reduce the impact of these Citrus by-products, young, harvested fruits could be used as a functional supplemental food while another part is grown until maturity for industrial production. This study therefore aims to valorize rangpur (Citrus limonia) in the first 3 months of its growth by investigating and comparing its monthly chemical profiles using ultra-performance liquid chromatography-electrospray mass spectrometry (UPLC-ESI-MS) and its anti-inflammatory and antiplatelet activity.RESULTS: Extracts obtained from the fruits harvested in November, December, and January, 2017 and 2018 (L221117, L161217, and L160118) showed different UPLC-ESI-MS profiles. Twenty-five of the 26 detected metabolites were identified as cyclitol, pyrrolidine betaine, aryl propanoyl esters, chlorogenic acids, flavonoids, coumarins, and limonoids. Quantification studies indicated an increased concentration of hesperidin from the younger fruits to the older fruits of the series. L160118 reduced nitrogen oxide (NOx), tumor necrosis factor alpha (TNF-⊍), and interleukin 6 (IL-6) levels more than other extracts. Their activity followed the same trends as the hesperidin concentration in each fruit. In contrast, the most promising antiplatelet activity was observed with the extracts from the two youngest fruits. This suggests combined effects of the chemical components found in these fruits' extracts.CONCLUSION: The extracts obtained from these young fruits showed considerable anti-inflammatory and antiplatelet activity. Overall, young rangpur could be used as raw material to produce functional foods without producing any waste.
COVID-19 has caused many deaths since the first outbreak in 2019. The burden on healthcare systems around the world has been reduced by the success of vaccines.However, population adherence and the occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are still challenging tasks to be affronted. In addition, the newly approved drug presents some limitations in terms of side effects and drug interference, highlighting the importance of searching for new antiviral agents against SARS-CoV-2. The SARS-CoV-2 main protease (M pro ) represents a versatile target to search for new drug candidates due to its essential role in proteolytic activities responsible for the virus replication. In this work, a series of 190 compounds, composed of 27 natural ones and 163 synthetic compounds, were screened in vitro for their inhibitory effects against SARS-CoV-2 M pro . Twentyfive compounds inhibited M pro with inhibitory constant values (K i ) between 23.2 and 241 µM. Among them, a thiosemicarbazone derivative was the most active compound. Molecular docking studies using Protein Data Bank ID 5RG1, 5RG2, and 5RG3 crystal structures of M pro revealed important interactions identified as hydrophobic, hydrogen bonding and steric interactions with amino acid residues in the active site cavity. Overall, our findings indicate the described thiosemicarbazones as good candidates to be further explored to develop antiviral leads against SARS-CoV-2. Moreover, the studies showed the importance of careful evaluation of test results to detect and exclude false-positive findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.