Myosin VI challenges the prevailing theory of how myosin motors move on actin: the lever arm hypothesis. While the reverse directionality and large powerstroke of myosin VI can be attributed to unusual properties of a subdomain of the motor (converter with a unique insert), these adaptations cannot account for the large step size on actin. Either the lever arm hypothesis needs modification, or myosin VI has some unique form of extension of its lever arm. We determined the structure of the region immediately distal to the lever arm of the motor and show that it is a 3-helix bundle. Based on C-terminal truncations that display the normal range of step sizes on actin, CD, fluorescence studies, and a partial deletion of the bundle, we demonstrate that this bundle unfolds upon dimerization of two myosin VI monomers. This unprecedented mechanism generates an extension of the lever arm of myosin VI.
Due to a unique addition to the lever arm-positioning region (converter), class VI myosins move in the opposite direction (toward the minus-end of actin filaments) compared to other characterized myosin classes. However, the large size of the myosin VI lever arm swing (powerstroke) cannot be explained by our current view of the structural transitions that occur within the myosin motor. We have solved the crystal structure of a fragment of the myosin VI motor in the structural state that represents the starting point for movement on actin; the pre-powerstroke state. Unexpectedly, the converter itself rearranges to achieve a conformation that has not been seen for other myosins. This results in a much larger powerstroke than is achievable without the converter rearrangement. Moreover, it provides a new mechanism that could be exploited to increase the powerstroke of yet to be characterized plus-end-directed myosin classes.
It is unclear if the reverse-direction myosin, myosin VI, functions as a monomer or dimer in cells and how it generates large movements on actin. We deleted a stable, single α-helix (SAH) domain that has been proposed to function as part of a lever arm to amplify movements, without impact on in vitro movement or in vivo functions. A myosin VI construct that used this SAH domain as part of its lever arm was able to take large steps in vitro, but did not rescue in vivo functions. It was necessary for myosin VI to internally dimerize, triggering unfolding of a three-helix bundle and calmodulin binding in order to step normally in vitro and rescue endocytosis and Golgi morphology in myosin VI-null fibroblasts. A model for myosin VI emerges in which cargo binding triggers dimerization and unfolds the three-helix bundle to create a lever arm essential for in vivo functions.
SUMMARY
Myosin VI is the only known reverse-direction myosin motor. It has an unprecedented means of amplifying movements within the motor involving rearrangements of the converter subdomain at the C-terminus of the motor and an unusual lever arm projecting from the converter. While the average step size of a myosin VI dimer is 30–36nm, the step size is highly variable, presenting a challenge to the lever arm mechanism by which all myosins are thought to move. Herein we present new structures of myosin VI that reveal regions of compliance that allow an uncoupling of the lead head when movement is modeled on actin. The location of the compliance restricts the possible actin binding sites and predicts the observed stepping behavior. The model reveals that myosin VI, unlike plus-end directed myosins, does not use a pure lever arm mechanism, but instead steps with a mechanism analogous to the kinesin neck-linker uncoupling model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.