Photodynamic antimicrobial chemotherapy (PACT) is a potential antimicrobial therapy that combines light and a photosensitizing drug, promoting a phototoxic effect on the treated cells, in general via oxidative damage. In this work we studied the effect of PACT, using methylene blue (MB), on the permeability of Candida albicans membrane. Our results demonstrated that the combination of MB and laser (684 nm) promoted a decrease in Candida growth. The inhibition was more pronounced in the presence of 0.05 mg/ml MB and with an energy density of 28 J/cm(2). The decrease in Candida growth was associated with an increase in membrane permeabilization. Thus, we suggest that a PACT mechanism using MB can be related to damage in the plasma membranes of the cells.
Due to the increased number of immunocompromised patients, the infections associated with the pathogen of the genus Candida and other fungi have increased dramatically. Photodynamic antimicrobial chemotherapy (PACT) has been presented as a potential antimicrobial therapy, in a process that combines light and a photosensitizing drug, which promotes a phototoxic response by the treated cells. In this work, we studied the effects of the different medium conditions during PACT, using either methylene blue (MB) or toluidine blue (TB) on Candida albicans. The inhibition of the growth produced by PACT was decreased for different pH values (6.0, 7.0, and 8.0) in a buffered medium. The phototoxic effects were observed only in the presence of saline (not buffered medium). PACT was modulated by calcium in a different manner using either MB or TB. Also when using MB both verapamil or sodium azide were able to decrease the phototoxic effects on the C. albicans. These results show that PACT is presented as a new and promising antifungal therapy, however, new studies are necessary to understand the mechanism by which this event occurs.
Infections caused byCandida albicansare of increasing concern, especially considering immunodepressed patients. The toxicity of most antifungal agents, the great number of cases with recidives, as well as the emergence of resistant samples has provoked the evaluation of new forms of therapy. In this context, the photodynamic therapy (PDT) presents auspicious antimicrobial properties, stimulating the development of trials employing several kinds of photosensitizers. In the present work, the application of different kind of Azure dyes as photosensitizer in PDT againstC. albicanswas evaluated through instrumental measurements of electronic spectroscopy. In fact, the values of optical density were a precise indicator of the growth inhibition of the microorganisms. Indeed, Azures are phenothiazinium derivatives that constitute a very relevant class of compounds with several biomedical applications, such as photoantimicrobial therapy against local bacterial infection, tuberculosis, trypanosomiasis, malaria, Rickettsia, yeasts, viral infectionnand cancer. Azure A, Azure B, Azure A thiocyanate, Azure B BF4, Azure A eosinate are the dyes tested againstC. albicans. The results denoted completely distinct behaviors to the different types of Azure compound evaluated in this work. In fact, Azure A and Azure A eosinate presented significant results when irradiated with 56 J/cm2, since the growth inhibition ofC. albicansreached approximately 60%. This Azure compounds have significant potential to be employed as photosensitizer (PS) in PDT, especially in cases of mucocutaneous candidosis. The spectroscopic evaluation was very effective to the detection of slight alterations in the growth of the microorganisms, denoting that this kind of analysis is an excellent alternative to determine growth inhibition ofCandida albicans. The experimental data are discussed in details in agreement with recent results from literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.