Wind energy is one of the speedy processing technologies in the energy generation industry and the most economical methods of electrical power generation. For the reliability of system, it is wanted to improve highly appropriate wind speed forecasting methods. The wavelet transform is a powerful mathematical technique that converts an analyzed signal into a time-frequency representation. This technique has proven useful in a nonstationary time series forecasting. The aims of this study are to propose a wavelet function by derivation of a quotient from two different Lucas polynomials, as well as a comparison between an artificial neural network (ANN) and wavelet-artificial neural network (WNN). We used the proposed wavelet, Mexican hat, Morlet, Gaussian, Haar, Daubechies, and Coiflet to transform the wind speed data using the continuous wavelet transform (CWT). MATLAB software was used to implement the CWT and ANN. The proposed models were applied in the meteorological field to forecast the daily wind speed data that were collected from the meteorological directorate of Sulaymaniyah which is a city located in the Kurdistan region of Iraq for the period (Jan. 2011–Dec. 2020). Five different performance criteria during calibration and validation, the root mean square error ( R M S E ), mean square error ( M S E ), mean absolute percentage error M A P E , mean absolute error M A E , and coefficient of determination ( R 2 ), were evaluated. When studying, analyzing, and comparing these models, the results of the study concluded that the proposed wavelet-ANN is the best result ( M S E = 0.00072 , R M S E = 0.02683 , M A P E = 2.32400 , and R 2 = 0.99983 .
Time series analysis is the statistical approach used to analyze a series of data. Time series is the most popular statistical method for forecasting, which is widely used in several statistical and economic applications. The wavelet transform is a powerful mathematical technique that converts an analyzed signal into a time-frequency representation. The wavelet transform method provides signal information in both the time domain and frequency domain. The aims of this study are to propose a wavelet function by derivation of a quotient from two different Fibonacci coefficient polynomials, as well as a comparison between ARIMA and wavelet-ARIMA. The time series data for daily wind speed is used for this study. From the obtained results, the proposed wavelet-ARIMA is the most appropriate wavelet for wind speed. As compared to wavelets the proposed wavelet is the most appropriate wavelet for wind speed forecasting, it gives us less value of MAE and RMSE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.