Abstract. Air quality degradation is a major issue in the large conurbations on the shore of the Gulf of Guinea. We present for the first time PM 2.5 time series collected in Cotonou, Benin, and Abidjan, Côte d'Ivoire, from February 2015 to March 2017. Measurements were performed in the vicinity of major combustion aerosol sources: Cotonou/traffic (CT), Abidjan/traffic (AT), Abidjan/landfill (AL) and Abidjan/domestic fires (ADF). We report the weekly PM 2.5 mass and carbonaceous content as elemental (EC) and organic (OC) carbon concentrations. We also measure the aerosol optical depth (AOD) and the Ångström exponent in both cities. The average PM 2.5 mass concentrations were 32 ± 32, 32 ± 24 and 28 ± 19 µg m −3 at traffic sites CT and AT and landfill site AL, respectively. The domestic fire site shows a concentration of 145 ± 69 µg m −3 due to the contribution of smoking and roasting activities. The highest OC and EC concentrations were also measured at ADF at 71 ± 29 and 15 ± 9 µg m −3 , respectively, while the other sites present OC concentration between 8 and 12 µg m −3 and EC concentrations between 2 and 7 µg m −3 . The OC / EC ratio is 4.3 at CT and 2.0 at AT. This difference highlights the influence of two-wheel vehicles using gasoline in Cotonou compared to that of four-wheel vehicles using diesel fuel in Abidjan. AOD was rather similar in both cities, with a mean value of 0.58 in Cotonou and of 0.68 in Abidjan. The seasonal cycle is dominated by the large increase in surface mass concentration and AOD during the long dry season (December-February) as expected due to mineral dust advection and biomass burning activities. The lowest concentrations are observed during the short dry season (August-September) due to an increase in surface wind speed leading to a better ventilation. On the other hand, the high PM 2.5 / AOD ratio in the short wet season (October-November) indicates the stagnation of local pollution.
Abstract. A number of campaigns have been carried out to establish the emission factors of pollutants from fuel combustion in West Africa, as part of work package 2 (“Air Pollution and Health”) of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) FP7 program. Emission sources considered here include wood (hevea and iroko) and charcoal burning, charcoal making, open trash burning, and vehicle emissions, including trucks, cars, buses and two-wheeled vehicles. Emission factors of total particulate matter (TPM), elemental carbon (EC), primary organic carbon (OC) and volatile organic compounds (VOCs) have been established. In addition, emission factor measurements were performed in combustion chambers in order to reproduce field burning conditions for a tropical hardwood (hevea), and obtain particulate emission factors by size (PM0.25, PM1, PM2.5 and PM10). Particle samples were collected on quartz fiber filters and analyzed using gravimetric method for TPM and thermal methods for EC and OC. The emission factors of 58 VOC species were determined using offline sampling on a sorbent tube. Emission factor results for two species of tropical hardwood burning of EC, OC and TPM are 0.98 ± 0.46 g kg−1 of fuel burned (g kg−1), 11.05 ± 4.55 and 41.12 ± 24.62 g kg−1, respectively. For traffic sources, the highest emission factors among particulate species are found for the two-wheeled vehicles with two-stroke engines (2.74 g kg−1 fuel for EC, 65.11 g kg−1 fuel for OC and 496 g kg−1 fuel for TPM). The largest VOC emissions are observed for two-stroke two-wheeled vehicles, which are up to 3 times higher than emissions from light-duty and heavy-duty vehicles. Isoprene and monoterpenes, which are usually associated with biogenic emissions, are present in almost all anthropogenic sources investigated during this work and could be as significant as aromatic emissions in wood burning (1 g kg−1 fuel). EC is primarily emitted in the ultrafine fraction, with 77 % of the total mass being emitted as particles smaller than 0.25 µm. The particles and VOC emission factors obtained in this study are generally higher than those in the literature whose values are discussed in this paper. This study underlines the important role of in situ measurements in deriving realistic and representative emission factors.
Abstract. This work is part of the DACCIWA FP7 project (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) in the framework of the Work Package 2 "Air Pollution and Health". This study aims to characterize urban air pollution levels through the measurement of NO 2 , SO 2 , NH 3 , HNO 3 and O 3 in Abidjan, the economic capital of Côte d'Ivoire. Measurements of inorganic gaseous pollutants, i.e. NO 2 , SO 2 , NH 3 , HNO 3 and O 3 were performed in Abidjan during an intensive campaign within the dry season (15 December 2015 to 16 February 2016), using INDAAF (International Network to study Deposition and Atmospheric chemistry in AFrica) passive samplers exposed in duplicate for 2-week periods. Twenty-one sites were selected in the district of Abidjan to be representative of various anthropogenic and natural sources of air pollution in the city. Results from this intensive campaign show that gas concentrations are strongly linked to surrounding pollution sources and show a high spatial variability. Also, NH 3 , NO 2 and O 3 gases were present at relatively higher concentrations at all the sites. NH 3 average concentrations varied between 9.1 ± 1.7 ppb at a suburban site and 102.1 ± 9.1 ppb at a domestic fires site. NO 2 mean concentration varied from 2.7 ± 0.1 ppb at a suburban site to 25.0 ± 1.7 ppb at an industrial site. Moreover, we measured the highest O 3 concentration at the two coastal sites of Gonzagueville and Félix-Houphouët-Boigny International Airport located in the southeast of the city, with average concentrations of 19.1 ± 1.7 and 18.8 ± 3.0 ppb, respectively. The SO 2 average concentration never exceeded 7.2 ± 1.2 ppb over all the sites, with 71.5 % of the sampling sites showing concentrations ranging between 0.4 and 1.9 ppb. The HNO 3 average concentration ranged between 0.2 and 1.4 ppb. All these results were combined with meteorological parameters to provide the first mapping of gaseous pollutants on the scale of the district of Abidjan using geostatistical analysis (ArcGIS software). Spatial distribution results emphasize the importance of the domestic fires source and the significant impact of the traffic emissions on the scale of the city. In addition, in this work we propose a first overview of gaseous SO 2 and NO 2 concentrations on the scale of several African cities by comparing literature to our values. The daily SO 2 standard of World Health Organization (WHO) is exceeded in most of the cities reported in the overview, with concentrations ranging from 0.2 to 3662 µg m −3 . Annual NO 2 concentrations ranged from 2 to 175 µg m −3 , which are lower than the WHO threshold. As a conclusion, this study constitutes an original database to characterize urban air pollution and a first attempt towards presenting a spatial distribution of the pollution levels at the scale of the metropolis of Abidjan. This work should draw the attention of the African public authorities to the necessity of building an air quality monitoring network in order to (1) to define national standards and to bette...
Socioeconomic development in low- and middle-income countries has been accompanied by increased emissions of air pollutants, such as nitrogen oxides [NOx: nitrogen dioxide (NO2) + nitric oxide (NO)], which affect human health. In sub-Saharan Africa, fossil fuel combustion has nearly doubled since 2000. At the same time, landscape biomass burning—another important NOx source—has declined in north equatorial Africa, attributed to changes in climate and anthropogenic fire management. Here, we use satellite observations of tropospheric NO2 vertical column densities (VCDs) and burned area to identify NO2 trends and drivers over Africa. Across the northern ecosystems where biomass burning occurs—home to hundreds of millions of people—mean annual tropospheric NO2 VCDs decreased by 4.5% from 2005 through 2017 during the dry season of November through February. Reductions in burned area explained the majority of variation in NO2 VCDs, though changes in fossil fuel emissions also explained some variation. Over Africa’s biomass burning regions, raising mean GDP density (USD⋅km−2) above its lowest levels is associated with lower NO2 VCDs during the dry season, suggesting that economic development mitigates net NO2 emissions during these highly polluted months. In contrast to the traditional notion that socioeconomic development increases air pollutant concentrations in low- and middle-income nations, our results suggest that countries in Africa’s northern biomass-burning region are following a different pathway during the fire season, resulting in potential air quality benefits. However, these benefits may be lost with increasing fossil fuel use and are absent during the rainy season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.