This paper presents the development of a polymer based microneedle patch for transdermal drug delivery application using plastic microinjection moulding. Design and analysis of the microneedle cavities and mould insert used in the injection moulding process were carried out using Computer-Aided Engineering (CAE) software. A mould insert with low surface roughness was fabricated using Micro Electrical Discharge Machining (μ-EDM). The injection moulding parameters including clamping force, temperature, injection pressure and velocity were characterized in order to obtain the optimum reproducibility. Solid truncated cone microneedles, made of biocompatible polymethyl methacrylate (PMMA), with a round tip radius of 50 μm and 500 μm in height have been realized by microinjection moulding process demonstrating the potential of a low cost, high production efficiency, and suitable for mass production. In addition, a mould insert of cylindrical microneedles fabricated using X-ray LIGA has been proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.