We have assembled data from Caenorhabditis elegans DNA microarray experiments involving many growth conditions, developmental stages, and varieties of mutants. Co-regulated genes were grouped together and visualized in a three-dimensional expression map that displays correlations of gene expression profiles as distances in two dimensions and gene density in the third dimension. The gene expression map can be used as a gene discovery tool to identify genes that are co-regulated with known sets of genes (such as heat shock, growth control genes, germ line genes, and so forth) or to uncover previously unknown genetic functions (such as genomic instability in males and sperm caused by specific transposons).
The nematode worm Caenorhabditis elegans and its relatives are unique among animals in having operons. Operons are regulated multigene transcription units, in which polycistronic pre-messenger RNA (pre-mRNA coding for multiple peptides) is processed to monocistronic mRNAs. This occurs by 3' end formation and trans-splicing using the specialized SL2 small nuclear ribonucleoprotein particle for downstream mRNAs. Previously, the correlation between downstream location in an operon and SL2 trans-splicing has been strong, but anecdotal. Although only 28 operons have been reported, the complete sequence of the C. elegans genome reveals numerous gene clusters. To determine how many of these clusters represent operons, we probed full-genome microarrays for SL2-containing mRNAs. We found significant enrichment for about 1,200 genes, including most of a group of several hundred genes represented by complementary DNAs that contain SL2 sequence. Analysis of their genomic arrangements indicates that >90% are downstream genes, falling in 790 distinct operons. Our evidence indicates that the genome contains at least 1,000 operons, 2 8 genes long, that contain about 15% of all C. elegans genes. Numerous examples of co-transcription of genes encoding functionally related proteins are evident. Inspection of the operon list should reveal previously unknown functional relationships.
The unfolded protein response (UPR) counteracts stress caused by unprocessed ER client proteins. A genome-wide survey showed impaired induction of many UPR target genes in xbp-1 mutant Caenorhabditis elegans that are unable to signal in the highly conserved IRE1-dependent UPR pathway. However a family of genes, abu (activated in blocked UPR), was induced to higher levels in ER-stressed xbp-1 mutant animals than in ER-stressed wild-type animals. RNA-mediated interference (RNAi) inactivation of a representative abu family member, abu-1 (AC3.3), activated the ER stress marker hsp-4::gfp in otherwise normal animals and killed 50% of ER-stressed ire-1 and xbp-1 mutant animals. Abu-1(RNAi) also enhanced the effect of inactivation of sel-1, an ER-associated protein degradation gene. The nine abu genes encode highly related type I transmembrane proteins whose lumenal domains have sequence similarity to a mammalian cell surface scavenger receptor of endothelial cells that binds chemically modified extracellular proteins and directs their lysosomal degradation. Our findings that ABU-1 is an intracellular protein located within the endomembrane system that is induced by ER stress in xbp-1 mutant animals suggest that ABU proteins may interact with abnormal ER client proteins and this function may be particularly important in animals with an impaired UPR.
In Caenorhabditis elegans, let-60 Ras controls many cellular processes, such as differentiation of vulval epithelial cells, function of chemosensory neurons, and meiotic progression in the germ line. Although much is known about the let-60 Ras signaling pathway, relatively little is understood about the target genes induced by let-60 Ras signaling that carry out terminal effector functions leading to morphological change. We have used DNA microarrays to identify 708 genes that change expression in response to activated let-60 Ras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.