Knowledge about the host range and genetic structure of emerging plant viruses provides insights into fundamental ecological and evolutionary processes, and from an applied perspective, facilitates the design and implementation of sustainable disease control measures. Tomato leaf curl New Delhi virus (ToLCNDV) is an emerging whitefly transmitted begomovirus that is rapidly spreading and inciting economically important diseases in cucurbit crops of the Mediterranean basin. Genetic characterization of the ToLCNDV Mediterranean populations has shown that they are monophyletic in cucurbit plants. However, the extent to which other alternative (cultivated and wild) hosts may affect ToLCNDV genetic population structure and virus prevalence remains unknown. In this study a total of 683 samples from 13 cultivated species, and 203 samples from 24 wild species from three major cucurbit-producing areas of Spain (Murcia, Alicante and Castilla-La Mancha) from five cropping seasons (2012–2016) were analyzed for ToLCNDV infection. Except for watermelon, ToLCNDV was detected in all cultivated-cucurbit species as well as in tomato. Among weeds, Ecballium elaterium, Datura stramonium, Sonchus oleraceus , and Solanum nigrum were identified as alternative ToLCNDV plant hosts, which could act as new potential sources of virus inoculum. Furthermore, we performed full-genome deep-sequencing of 80 ToLCNDV isolates from different hosts, location and cropping year. Our phylogenetic analysis supports a Mediterranean virus population that is genetically very homogeneous, with no clustering pattern, and clearly different from Asian virus populations. Additionally, D. stramonium displayed higher levels of within-host genetic diversity than cultivated plants, and this variability appeared to increase with time. These results suggest that the potential ToLCNDV adaptive evolution occurring in wild plant hosts could serve as a source of virus genetic variability, thereby affecting the genetic structure and spatial-temporal dynamics of the viral population.
ABSTRACT. In Tunisia, potato virus Y (PVY) currently presents a significant threat to potato production, reducing tuber yield and quality. Three hundred and eighty-five potato samples (six different cultivars) collected in autumn 2007 from nine regions in Tunisia were tested for PVY infection by DAS-ELISA. The virus was detected in all regions surveyed, with an average incidence of 80.26%. Subsequently, a panel of 82 Tunisian PVY isolates (PVY-TN) was subjected to systematic biological, serological and molecular typing using immunocapture reverse-transcription polymerase chain reaction and a series of PVY OCand PVY N -specific monoclonal antibodies. Combined analyses revealed ~67% of PVY NTN variants of which 17 were sequenced in the 5'NTR-P1 region to assess the genetic diversity and phylogenetic relationship of PVY-TN against other worldwide PVY isolates. To investigate whether selective constraints could act on viral genomic RNA, synonymous and non-synonymous substitution rates and their ratio were analyzed. Averages of all pairwise comparisons obtained in the 5'NTR-P1 region allowed more synonymous changes, suggesting selective constraint acting in this region. Selective neutrality test was significantly negative, suggesting a rapid expansion of PVY isolates. Pairwise mismatch distribution gave a bimodal pattern and pointed to an eventually early evolution characterizing these sequences. Genetic haplotype network topology provided evidence of the existence of a distinct geographical structure. This is the first report of such genetic analyses conducted on PVY isolates from Tunisia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.