Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon–hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite.
Ceria-zirconia mixed oxides and gold supported oxides exhibit very good thermal stability and catalytic activity, as well as great selectivity. This work has been focused on the controlled synthesis and characterization of cationic- and amphiphilic-templated ceria, zirconia, and ceria-zirconia mixed oxides from nitrate and iso-propoxide precursors, and ceria-zirconia mixed oxides modified with gold via the deposition precipitation method with urea. The characterization of the acidic and basic properties was carried out through two test reactions. A complete chemical and structural characterization of the materials was done using Atomic Absorption Spectroscopy (AAS), Brunauer-Emmet-Teller Surface Analysis (N2-BET), X-Ray Diffraction (XRD), NH3- Temperature Programmed Desorption (TPD)/CO2-TPD, and Fourier Transform Infrared Spectroscopy (FTIR). Template techniques led to the formation of high surface area mesoporous materials with high activity and thermal stability. In general, the acid sites density was decreased, whereas the basic site density was increased by modification with Au or incorporation of zirconia in case of mixed oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.