Connective tissue growth factor is a recently described chemoattractant and fibroblast mitogen which, because of sequence homology and weak binding to insulin-like growth factor (IGF)-1, has been proposed as the eighth member of the IGF binding protein (IGFBP) superfamily, named IGFBP-related protein 2 (IGFBP-rP2). Previous studies have implicated IGFBP-rP2 in a number of heterogeneous fibrotic pathologies, including renal fibrosis, dermal scleroderma, and bleomycin-induced pulmonary fibrosis in mice. Because profibrogenic cytokines may be produced by inflammatory cells, we developed a multiplex competitive reverse transcription/polymerase chain reaction to quantify IGFBP-rP2 transcripts in bronchoalveolar lavage cells from healthy subjects and patients with idiopathic pulmonary fibrosis (IPF) and pulmonary sarcoidosis. IGFBP-rP2 messenger RNA expression was enhanced > 10-fold (P < 0.003) in patients with IPF; > 40-fold (P < 0.006) in stage I/II sarcoidosis patients, and > 90-fold (P < 0.005) in stage III/IV sarcoidosis patients by comparison with healthy nonsmoking control subjects. We suggest these increases are predominantly associated with lymphocyte- and neutrophil-driven IGFBP-rP2 production. These findings, together with previous reports implicating other IGFBPs in the pathogenesis of pulmonary fibrosis, suggest that the complex network of IGFBPs within the human lung is an important determinant of the outcome of the fibroproliferative response to injury.
Connective tissue growth factor (CTGF), a potent profibrotic mediator, acts downstream and in concert with transforming growth factor (TGF)-β to drive fibrogenesis. Significant upregulation of CTGF has been reported in fibrogenic diseases, including idiopathic pulmonary fibrosis (IPF), and is partly responsible for associated excessive fibroblast proliferation and extracellular matrix deposition, but no effective therapy exists for averting such fibrogeneic events. Simvastatin has reported putative antifibrotic actions in renal fibroblasts; this study explores such actions on human IPF-derived and normal lung fibroblasts and examines associated driving mechanisms. Simvastatin reduces basal CTGF gene and protein expression in all fibroblast lines, overriding TGF-β induction through inhibition of the cholesterol synthesis pathway. Signaling pathways driving simvastatin's effects on CTGF/TGF-β interaction were evaluated using transient reporter transfection of a CTGF promoter construct. Inhibition of CTGF promoter activity by simvastatin was most marked at 10 μM concentration, reducing activity by 76.2 and 51.8% over TGF-β-stimulated cultures in IPF and normal fibroblasts, respectively. We also show that geranylgeranylpyrophosphate (GGPP), but not farnesylpyrophosphate, induces CTGF promoter activity following simvastatin inhibition by 55.3 and 31.1% over GGPP-negative cultures in IMR90 and IPF-derived fibroblasts, respectively, implicating small GTPase Rho involvement rather than Ras in these effects. Indeed, the specific Rho inhibitor C3 exotoxin significantly ( P < 0.05) suppressed TGF-β-induced CTGF promoter activity in transfected lung fibroblasts, a finding further supported by transfection of dominant-negative and constitutively active RhoA constructs, thus demonstrating that simvastatin through a Rho signaling mechanism in lung fibroblasts can modulate CTGF expression and interaction with TGF-β.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.