High purity TiO2 and CuO powders were synthesized by the Pechini method, an inexpensive and easy-to-implement procedure to synthetize metal oxides. The variables of synthesis were the ethylene glycol:citric acid molar ratio and the pH. High reproducibility of the anatase and tenorite phase was obtained for all synthesis routes. The degree of purity of the powders was confirmed by XRD, FTIR, UV-vis absorption and XPS spectra. SEM and TEM images revealed the powders are composed by micrometer grains that can have a spherical shape (only in the TiO2) or formed by a non-compacted nanocrystalline conglomerate. FTIR spectra only vibrational modes associated to the TiO2 or CuO with a nanoparticle behavior. UV-vis absorption spectra revealed the values of maximum absorbance percentage of both systems are reached in the ultraviolet region, with percentages above 83 % throughout the entire visible light spectrum for the CuO system, a relevant result for solar cell applications. Finally, XPS experiments allow the observation of the valence bands and the calculation of the energy bands of all oxides.
High-purity TiO2 and CuO powders were synthesized by the Pechini method, an inexpensive and easy-to-implement procedure to synthetize metal oxides. The variables of synthesis were the ethylene glycol:citric acid molar ratio and the pH. High reproducibility of the anatase and tenorite phase was obtained for all synthesis routes. The degree of purity of the powders was confirmed by XRD, FTIR, UV-Vis absorption and XPS spectra. SEM and TEM images revealed the powders are composed of micrometer grains that can have a spherical shape (only in the TiO2) or formed by a non-compacted nanocrystalline conglomerate. FTIR spectra only displayed vibrational modes associating TiO2 and CuO with nanoparticle behavior. UV-Vis absorption spectra revealed the values of maximum absorbance percentage of both systems are reached in the ultraviolet region, with percentages above 83% throughout the entire visible light spectrum for the CuO system, a relevant result for solar cell applications. Finally, XPS experiments allow the observation of the valence bands and the calculation of the energy bands of all oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.