Following the 2020 confinement due to the COVID-19 pandemic, housing has become the only safe place and this has exposed inequity in habitability. This research on the reality of confined households and the perception of their homes in the Mexican republic is based on a mixed participatory study, combining quantitative and qualitative approaches. The online questionnaire consisted of 58 questions in the quantitative approximation. The qualitative part required the provision of an image of the workspace, with testimonies and personal reflections. During the lockdown, all participants saw an increase in overall energy consumption; more than half reported not being in thermal comfort; and a third declared deficiencies in noise insulation. Regarding the perception of the telework/tele-study space, we found the following categories: bedrooms, living/dining rooms, studies and others. In addition, respondents had often adapted the workspace for both individual and shared use. In general, the households were satisfied with the size of their houses but would like landscaped spaces or better views outside. Confinement made housing the protective element against the pandemic. The consequences will have an effect globally, so new architectural design paradigms need to be rethought.
Unwanted agglomeration of micro particles in magnetorheological fluid is an important problem for many technological applications. Furthermore, the stability of this kind of fluid is also studied as an important property in many research papers. Prior to use, a redispersion of agglomerated or aggregated (connected by solid phase) particles is often necessary. The objective of this study is to evaluate the dispersibility effect of magnetic nanoparticles as a carrier, while keeping the magnetorheological (MR) effect as high as possible. A simple device based on the estimation of the penetration force of a standard needle is presented. The needle moves across the sample vertically with a constant velocity and it is attached to a scale which registers the force displaced by the needle during the dynamic test. The effect with and without other additives was also studied. Transmission electron microscopy (TEM) and Scanning Electron Microscopy (SEM) reveal a protective behavior of nanoparticles around the micro particles. We conclude that addition of magnetic nanoparticles improves the dispersibility characteristic compared with common dispersing additives without affecting the MR effect.
This article presents the experimental study of a preliminary investigation of a seismic damper device aimed at improving the behavior of structures when subjected to earthquakes. The damper is the result of a binomial material formed by an aluminum foam with pores of 1 mm diameter wetted by a magnetorheological fluid. The objective of this work is to explore the synergy between the two components on a magnetorheological test and to evaluate the effect of the Al foam pores in the structure buildup of the fluid. The analysis is completed with a compressive test carried out on the magnetorheological fluid-filled foam in the presence of a magnetic field. This kind of test demonstrates that the deformation of the foam for very small loads is limited by the hardening of the fluid because of its magnetorheological response. The results of this research suggest that there is a mutual benefit between the components of the device, presumably leading to an enhanced dissipation of vibration energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.