Chronic pelvic pain (CPP) is a highly disabling disorder in women usually associated with hypertonic dysfunction of the pelvic floor musculature (PFM). The literature on the subject is not conclusive about the diagnostic potential of surface electromyography (sEMG), which could be due to poor signal characterization. In this study, we characterized the PFM activity of three groups of 24 subjects each: CPP patients with deep dyspareunia associated with a myofascial syndrome (CPP group), healthy women over 35 and/or parous (>35/P group, i.e., CPP counterparts) and under 35 and nulliparous (<35&NP). sEMG signals of the right and left PFM were recorded during contractions and relaxations. The signals were characterized by their root mean square (RMS), median frequency (MDF), Dimitrov index (DI), sample entropy (SampEn), and cross-correlation (CC). The PFM activity showed a higher power (>RMS), a predominance of low-frequency components (<MDF, >DI), greater complexity (>SampEn) and lower synchronization on the same side (<CC) in CPP patients, with more significant differences in the >35/P group. The same trend in differences was found between healthy women (<35&NP vs. >35/P) associated with aging and parity. These results show that sEMG can reveal alterations in PFM electrophysiology and provide clinicians with objective information for CPP diagnosis.
The treatment of chronic pelvic pain (CPP) with botulinum neurotoxin type A (BoNT/A) has increased lately, but more studies assessing its effect are needed. This study aimed to evaluate the evolution of patients after BoNT/A infiltration and identify potential responders to treatment. Twenty-four women with CPP associated with dyspareunia were treated with 90 units of BoNT/A injected into their pelvic floor muscle (PFM). Clinical status and PFM activity were monitored in a previous visit (PV) and 12 and 24 weeks after the infiltration (W12, W24) by validated clinical questionnaires and surface electromyography (sEMG). The influence of patients’ characteristics on the reduction in pain at W12 and W24 was also assessed. After treatment, pain scores and the impact of symptoms on quality of life dropped significantly, sexual function improved and sEMG signal amplitude decreased on both sides of the PFM with no adverse events. Headaches and bilateral pelvic pain were risk factors for a smaller pain improvement at W24, while lower back pain was a protective factor. Apart from reporting a significant clinical improvement of patients with CPP associated with dyspareunia after BoNT/A infiltration, this study shows that clinical characteristics should be analyzed in detail to identify potential responders to treatment.
Chronic pelvic pain (CPP) is a complex condition with a high economic and social burden. Although it is usually treated with botulinum neurotoxin type A (BoNT/A) injected into the pelvic floor muscles (PFM), its effect on their electrophysiological condition is unknown. In this study, 24 CPP patients were treated with BoNT/A. Surface electromyographic signals (sEMG) were recorded at Weeks 0 (infiltration), 8, 12 and 24 from the infiltrated, non-infiltrated, upper and lower PFM. The sEMG of 24 healthy women was also recorded for comparison. Four parameters were computed: root mean square (RMS), median frequency (MDF), Dimitrov’s index (DI) and sample entropy (SampEn). An index of pelvic electrophysiological impairment (IPEI) was also defined with respect to the healthy condition. Before treatment, the CPP and healthy parameters of almost all PFM sides were significantly different. Post-treatment, there was a significant reduction in power (<RMS), a shift towards higher frequencies (>MDF), lower fatigue index (<DI) and increased information complexity (>SampEn) in all sites in patients, mainly during PFM contractions, which brought their electrophysiological condition closer to that of healthy women (<IPEI). sEMG can be used to assess the PFM electrophysiological condition of CPP patients and the effects of therapies such as BoNT/A infiltration.
Objective. The slow wave (SW) of the electrohysterogram (EHG) may contain relevant information on the electrophysiological condition of the uterus throughout pregnancy and labor. Our aim was to assess differences in the SW as regards the imminence of labor and the directionality of uterine myoelectrical activity. Approach. The SW of the EHG was extracted from the signals of the Icelandic 16-electrode EHG database in the bandwidth [5, 30] mHz and its power, spectral content, complexity and synchronization between the horizontal (X) and vertical (Y) directions were characterized by the root mean square (RMS), dominant frequency (domF), sample entropy (SampEn) and maximum cross-correlation (CCmax) of the signals, respectively. Significant differences between parameters at time-to-delivery (TTD) ≤7 vs. >7 days and between the horizontal vs. vertical directions were assessed. Main results. The SW power significantly increased in both directions as labor approached (TTD≤7d vs. >7d (mean±SD): x= 0.12±0.10 vs. 0.08±0.06mV; y= 0.12±0.09 vs. 0.08±0.05mV), as well as the dominant frequency in the horizontal direction (= 9.1±1.3 vs. 8.5±1.2mHz) and the synchronization between both directions (= 0.44±0.16 vs. 0.36±0.14). Furthermore, its complexity decreased in the vertical direction (= 6.13·10−2±8.7·10−3 vs. 6.50·10−2±8.3·10−3), suggesting a higher cell-to-cell electrical coupling. Whereas there were no differences between the SW features in both directions in the general population, statistically significant differences were obtained between them in individuals in many cases. Significance. Our results suggest that the SW of the EHG is related to bioelectrical events in the uterus and could provide objective information to clinicians in challenging obstetric scenarios.
Monitoring uterine contractions is essential during pregnancy and labor to obtain information on time-to-delivery and maternal and fetal wellbeing Intrauterine pressure (IUP) is considered the "gold standard" to monitor uterine activity, though it requires membrane rupture and is highly invasive. Considering that uterine mechanical activity is a direct consequence of uterine myoelectrical activity, IUP signal can be non-invasively estimated from abdominal electrohysterogram (EHG) recordings. Previous works have reported EHGbased IUP estimates with linear parameters as root-mean-square or Teager energy. Due to non-linear nature of biological processes, the aim of this study was to test the performance of different non-linear EHG parameters to estimate IUP signal. Simultaneous EHG and IUP recordings were conducted in 17 women during labour. Teager energy (TE), Sample entropy (SampEn), Spectral entropy (SpEn), Lempel-Ziv (LZ), and Poincaré parameters: SD1, SD2, SDRR and SD1/SD2 were computed from the EHG. Different window lengths for computation and for a smoothing moving average filter were tested. Monovariable linear regression models were used to obtain IUP estimates. The best results were obtained with TE and SD1, both computed and filtered with windows of 5 s and 20 s, respectively. In the latter case, the RMSerror was 12.25 ± 4.03 mmHg, which points that non-linear EHG parameters can provide relevant information for non-invasive uterine activity monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.