Regulation of gene expression in mammals through methylation of cytosine residues at CpG dinucleotides is involved in the development and progression of tumors. Because many genes that are involved in the control of cell proliferation are regulated by members of the E2F family of transcription factors and because some E2F DNA-binding sites are methylated in vivo, we have investigated whether CpG methylation can regulate E2F functions. We show here that methylation of E2F elements derived from the dihydrofolate reductase, E2F1, and cdc2 promoters prevents the binding of all E2F family members tested (E2F1 through E2F5). In contrast, methylation of the E2F elements derived from the c-myc and c-myb promoters minimally affects the binding of E2F2, E2F3, E2F4, and E2F5 but significantly inhibits the binding of E2F1. Consistent with these studies, E2F3, but not E2F1, activates transcription through methylated E2F sites derived from the c-myb and c-myc genes whereas both E2F1 and E2F3 fail to transactivate a reporter gene that is under the control of a methylated dihydrofolate reductase E2F site. Together, these data illustrate a means through which E2F activity can be controlled.
Most E2F-driven promoters are transiently activated around the G(1)/S transition. Although the promoter for the c-myb proto-oncogene harbors an E2F element, it is induced early in G(1) following entry into the cell cycle. Furthermore, this promoter remains active throughout subsequent cell cycles. Since E2F sites function as repressor elements during G(1) (due to the association of pRb with E2F factors), we investigated whether the E2F element in the c-myb promoter is regulated differently than E2F elements in promoters that are repressed during G(1). By gel shift analysis, the E2F element from the c-myb promoter was found to form a unique complex, referred to as E2Fmyb-sp, which was not observed with E2F elements from several other promoters. Antibodies to DP-1, E2F1 to -5, p107, or pRb failed to either supershift or block E2Fmyb-sp complex formation. Methylation interference experiments indicate that the DNA contact residues for the E2Fmyb-sp complex are distinct from but overlapping with residues required for the binding of E2F proteins. In addition to the identification of E2Fmyb-sp, we have found that SP-1 binds to the c-myb E2F element. Functional studies revealed that E2Fmyb-sp and/or SP-1 are required to achieve full activation of the c-myb promoter in different cell types and to maintain elevated expression of the c-myb promoter during G(1) in NIH 3T3 cells. These studies demonstrate that E2F elements can be regulated differently through the binding of unique sets of proteins.
Expression of the Epstein-Barr virus (EBV) latency-associated genes activates cell cycle progression and drives immortalization of the infected cell. In contrast, progression of the EBV replication program occurs most efficiently in growth-arrested cells. Previous studies showed that the EBV-encoded immediate-early transcription factor, Zta, can induce expression of the cyclin-dependent kinase inhibitors, p21 and p27, the tumor suppressor, p53, and cell growth arrest. Moreover, Zta-mediated induction of growth arrest occurs independently of its transcriptional transactivation function. Here we show that substitution of Zta’s basic DNA binding domain with the analogous region of the Zta homologue, c-Fos, abrogates Zta’s ability to induce growth arrest and to induce p21, p27, or p53 expression, suggesting that protein-protein interactions between this region of Zta and key cell cycle control proteins are involved in signaling cell cycle arrest. We also show that despite the crucial role for Zta’s basic domain in eliciting cell growth arrest, its amino terminus is required for efficient induction of p27 and it modulates the level of p53 induction. Last, we provide evidence that Zta-mediated inductions of p21, p27, and p53 occur, at least in part, through distinct pathways. Therefore, Zta interacts with multiple growth arrest pathways, a property which may have evolved partly as a means to ensure that lytic replication occurs in a growth-arrested setting in multiple different tissues in various states of differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.