Electron spins in silicon quantum dots are attractive systems for quantum computing owing to their long coherence times and the promise of rapid scaling of the number of dots in a system using semiconductor fabrication techniques. Although nearest-neighbour exchange coupling of two spins has been demonstrated, the interaction of spins via microwave-frequency photons could enable long-distance spin-spin coupling and connections between arbitrary pairs of qubits ('all-to-all' connectivity) in a spin-based quantum processor. Realizing coherent spin-photon coupling is challenging because of the small magnetic-dipole moment of a single spin, which limits magnetic-dipole coupling rates to less than 1 kilohertz. Here we demonstrate strong coupling between a single spin in silicon and a single microwave-frequency photon, with spin-photon coupling rates of more than 10 megahertz. The mechanism that enables the coherent spin-photon interactions is based on spin-charge hybridization in the presence of a magnetic-field gradient. In addition to spin-photon coupling, we demonstrate coherent control and dispersive readout of a single spin. These results open up a direct path to entangling single spins using microwave-frequency photons.
The interaction of qubits via microwave frequency photons enables
long-distance qubit-qubit coupling and facilitates the realization of a
large-scale quantum processor. However, qubits based on electron spins in
semiconductor quantum dots have proven challenging to couple to microwave
photons. In this theoretical work we show that a sizable coupling for a single
electron spin is possible via spin-charge hybridization using a magnetic field
gradient in a silicon double quantum dot. Based on parameters already shown in
recent experiments, we predict optimal working points to achieve a coherent
spin-photon coupling, an essential ingredient for the generation of long-range
entanglement. Furthermore, we employ input-output theory to identify observable
signatures of spin-photon coupling in the cavity output field, which may
provide guidance to the experimental search for strong coupling in such
spin-photon systems and opens the way to cavity-based readout of the spin
qubit
Floquet Majorana Fermions appear as steady states at the boundary of time-periodic topological phases of matter. In this work, we theoretically study the main features of these exotic topological phases in the periodically driven one-dimensional Kitaev model. By controlling the ac fields, we can predict new topological phase transitions that should give rise to signatures of Majorana states in experiments. Moreover, the knowledge of the time-dependence of these Majorana states allows one to manipulate them. Our work contains a complete analysis of the monochromatic driving in different frequency regimes.
Hole spin qubits in planar Ge heterostructures are one of the frontrunner platforms for scalable quantum computers. In these systems, the spin-orbit interactions permit efficient all-electric qubit control. We propose a minimal design modification of planar devices that enhances these interactions by orders of magnitude and enables low power ultrafast qubit operations in the GHz range. Our approach is based on an asymmetric potential that strongly squeezes the quantum dot in one direction. This confinement-induced spin-orbit interaction does not rely on microscopic details of the device such as growth direction or strain and could be turned on and off on demand in state-of-the-art qubits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.