We propose several econometric measures of connectedness based on principal-components analysis and Granger-causality networks, and apply them to the monthly returns of hedge funds, banks, broker/dealers, and insurance companies. We find that all four sectors have become highly interrelated over the past decade, likely increasing the level of systemic risk in the finance and insurance industries through a complex and time-varying network of relationships. These measures can also identify and quantify financial crisis periods, and seem to contain predictive power in out-of-sample tests. Our results show an asymmetry in the degree of connectedness among the four sectors, with banks playing a much more important role in transmitting shocks than other financial institutions.
We propose several econometric measures of systemic risk to capture the interconnectedness among the monthly returns of hedge funds, banks, brokers, and insurance companies based on principal components analysis and Granger-causality tests. We find that all four sectors have become highly interrelated over the past decade, increasing the level of systemic risk in the finance and insurance industries. These measures can also identify and quantify financial crisis periods, and seem to contain predictive power for the current financial crisis. Our results suggest that hedge funds can provide early indications of market dislocation, and systemic risk arises from a complex and dynamic network of relationships among hedge funds, banks, insurance companies, and brokers.
We propose several econometric measures of connectedness based on principal-components analysis and Granger-causality networks, and apply them to the monthly returns of hedge funds, banks, broker/dealers, and insurance companies. We find that all four sectors have become highly interrelated over the past decade, likely increasing the level of systemic risk in the finance and insurance industries through a complex and time-varying network of relationships. These measures can also identify and quantify financial crisis periods, and seem to contain predictive power in out-of-sample tests. Our results show an asymmetry in the degree of connectedness among the four sectors, with banks playing a much more important role in transmitting shocks than other financial institutions.
Vector autoregressive models have widely been applied in macroeconomics and macroeconometrics to estimate economic relationships and to empirically assess theoretical hypothesis. To achieve the latter, we propose a Bayesian inference approach to analyze the dynamic interactions among macroeconomics variables in a graphical vector autoregressive model. The method decomposes the structural model into multivariate autoregressive and contemporaneous networks that can be represented in the form of a directed acyclic graph. We then simulated the networks with an independent sampling scheme based on a single-move Markov Chain Monte Carlo (MCMC) approach. We evaluated the efficiency of our inference procedure with a synthetic data and an empirical assessment of the business cycles hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.