In order to better define the nature of the nuclear coordinate associated with excited state dynamics in first-row transition metal chromophores, variable-temperature ultrafast time-resolved absorption spectroscopy has been used to determine activation parameters associated with ground state recovery in a series of low-spin Fe(ii) polypyridyl complexes.
The development of chromophores based on earth-abundant transition metals whose photophysical properties are dominated by their chargetransfer excited states has inspired considerable research over the past decade. One challenge associated with this effort is satisfying the dual requirements of a strong ligand field and chemical tunability of the compound's absorptive cross-section. Herein we explore one possible approach using a heteroleptic compositional motif that combines both of these attributes into a single compound. With the parent complex [Fe(phen) 3 ] 2+ (1; where phen is 1,10-phenanthroline) as the starting material, replacement of one of the phen ligands for two cyanides to obtain Fe(phen) 2 (CN) 2 (2) allows for conversion to [Fe(phen) 2 (C 4 H 10 N 4 )] 2+ (3), a sixcoordinate Fe(II) complex whose coordination sphere consists of two chelating polypyridyl ligands and one bidentate carbene-based donor. Ground-state absorption spectra of all three compounds exhibit 1 A 1 → 1 MLCT transition(s) associated with the phen ligands that are relatively insensitive to the identity of the third counterligand(s). Ultrafast time-resolved electronic absorption measurements revealed lifetimes for the MLCT excited states of compounds 1 and 2 of 180 ± 30 and 250 ± 90 fs, respectively, values that are typical for iron(II)-based polypyridyl complexes. The corresponding kinetics for compound 3 were substantially slower at 7.4 ± 0.9 ps; the spectral evolution associated with these dynamics confirms that these kinetics are tracking the MLCT excited state and, more importantly, are coupled to ground-state recovery from this excited state. The data are interpreted in terms of a modulation of the relative energies of the MLCT and ligandfield states across the series, leading to a systematic destabilization of metal-localized ligand-field excited states such that the lowenergy portions of the charge-transfer and ligand-field manifolds are at or near an energetic inversion point in compound 3. We believe these results illustrate the potential for a modular, orthogonal approach to chromophore design in which part of the coordination sphere can be targeted for light absorption while another can be used to tune electronic-state energetics.
Ultrafast time-resolved electronic and infrared absorption measurements have been carried out on a series of Ru(II) polypyridyl complexes in an effort to delineate the dynamics of vibrational relaxation in this class of charge transfer chromophores. Time-dependent density functional theory calculations performed on compounds of the form [Ru(CN-Me-bpy) x (bpy) 3-x ] 2+ (x = 1-3 for compounds 1-3, respectively, where CN-Me-bpy is 4,4'-dicyano-5,5'-dimethyl-2,2'-bipyridine and bpy is 2,2'-bipyridine) reveal features in their charge-transfer absorption envelopes that allow for selective excitation of the Ru(II)-(CN-Me-bpy) moiety, the lowest-energy MLCT state(s) in each compound of the series. Changes in band shape and amplitude of the time-resolved differential electronic absorption data are ascribed to vibrational cooling in the CN-Me-bpy-localized 3 MLCT state with a time constant of 8 ± 3 ps in all three compounds. This conclusion was corroborated by picosecond time-resolved infrared absorption
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.