Changes in cellulose microstructure have been proposed to occur throughout hydrolysis that impact enzyme access and hydrolysis rates. However, there are very few direct observations of such changes in ongoing reactions. In this study, changes in the microstructure of cellulose are measured by simultaneous confocal and atomic force microscopy and are correlated to hydrolysis extents and quantities of bound enzyme in the reaction. Minimally processed and never-dried cellulose I was hydrolyzed by a purified cellobiohydrolase, Trichoderma reesei Cel7A. Early in the reaction ( approximately 30% hydrolysis), at high hydrolysis rates and high bound cellulase quantities, untwisting of cellulose microfibrils was observed. As the hydrolysis reaction neared completion (>80% hydrolysis), extensively thinned microfibrils (diameters of 3-5 nm) and channels (0.3-0.6 nm deep) along the lengths of the microfibrils were observed. The prominent microstructural changes in cellulose due to cellobiohydrolase action are discussed in the context of the overall hydrolysis reaction.
Microencapsulation of biomolecules, cells and chemicals is widely used in the food and pharmaceutical industries to improve stability, delivery and to control the release of encapsulated moieties. Among encapsulation matrices, alginate is preferred due to its low cost, biodegradability and biocompatibility. Current methods for producing stable alginate gels involve dropping alginate suspensions into divalent cation solutions. This procedure is difficult to scale-up and produces undesirably large alginate beads. In our novel encapsulation method, alginate gelation occurs during spray drying upon volatilisation of a base and rapid release of otherwise unavailable calcium ions. The resulting particles, with median particle sizes in the range 15-120 µm, are insoluble in solution. Cellulase and hemicellulase activities encapsulated by this method were not compromised during spray drying and remained stable over prolonged storage. The procedure described here offers a one-step alternative to other encapsulation methods that are costly and difficult to scale-up.
Sweet potato is a major crop in the southeastern United States, which requires few inputs and grows well on marginal land. It accumulates large quantities of starch in the storage roots and has been shown to give comparable or superior ethanol yields to corn per cultivated acre in the southeast. Starch conversion to fermentable sugars (i.e., for ethanol production) is carried out at high temperatures and requires the action of thermostable and thermoactive amylolytic enzymes. These enzymes are added to the starch mixture impacting overall process economics. To address this shortcoming, the gene encoding a hyperthermophilic α-amylase from Thermotoga maritima was cloned and expressed in transgenic sweet potato, generated by Agrobacterium tumefaciens-mediated transformation, to create a plant with the ability to self-process starch. No significant enzyme activity could be detected below 40°C, but starch in the transgenic sweet potato storage roots was readily hydrolyzed at 80°C. The transgene did not affect normal storage root formation. The results presented here demonstrate that engineering plants with hyperthermophilic glycoside hydrolases can facilitate cost effective starch conversion to fermentable sugars. Furthermore, the use of sweet potato as an alternative near-term energy crop should be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.