Mycobacterium tuberculosis is a leading cause of mortality worldwide and establishes a long-lived latent infection in a substantial proportion of the human population. Multiple lines of evidence suggest that some individuals are resistant to latent M. tuberculosis infection despite long-term and intense exposure, and we term these individuals 'resisters'. In this Review, we discuss the epidemiological and genetic data that support the existence of resisters and propose criteria to optimally define and characterize the resister phenotype. We review recent insights into the immune mechanisms of M. tuberculosis clearance, including responses mediated by macrophages, T cells and B cells. Understanding the cellular mechanisms that underlie resistance to M. tuberculosis infection may reveal immune correlates of protection that could be utilized for improved diagnostics, vaccine development and novel host-directed therapeutic strategies.
Rationale: Interferon-g release assays are used to diagnose tuberculosis infection. In developed countries, high rates of reversion following conversion have been described.Objectives: To assess QuantiFERON TB Gold In-Tube test (QFT) conversion and reversion dynamics in a tuberculosisendemic setting.Methods: Adolescents aged 12-18 years residing near Cape Town were recruited. Tuberculin skin tests (TSTs) and QFTs were performed at baseline and after 2 years of follow up. Half of the participants had TST and QFT performed at additional time points. Participants were observed for incident tuberculosis disease for up to 5 years.Measurements and Main Results: Among 5,357 participants, 2,751 (51.4%) and 2,987 (55.8%) had positive QFT and TST results, respectively, at baseline. Annualized QFT and TST conversion risks were 14.0 and 13.0%, respectively, and reversion risks were 5.1 and 4.1%, respectively. Concordance was excellent for conversions (k = 0.74), but poor for reversions (k = 0.12). Among recent QFT converters, the magnitude of the QFT value was strongly inversely associated with risk of reversion (P , 0.0001). When longitudinal QFT data were analyzed in a cross-sectional manner, the annual risk of infection was 7.3%, whereas inclusion of reversions in the analysis showed that the actual risk of infection was 14.0%. Incident tuberculosis was 8-fold higher among QFT reverters than in participants with all negative QFT results (1.47 vs. 0.18 cases/100 person-years, P = 0.011).Conclusions: In this tuberculosis-endemic setting, annual risk of infection was extremely high, whereas QFT and TST conversion concordance was higher and QFT reversion rates were lower than reported in low-burden settings.
Toll-like receptors (TLRs) recognize highly conserved microbial molecular patterns, such as found in endotoxin. This study tested whether TLR4 and TLR2 stimulation in vivo would modulate subsequent adaptive (allergic) immune responses. We analyzed the effects of pulmonary administration of a TLR4 agonist, lipid A (LpA), and two TLR2 agonists, peptidoglycan (Ppg) and PamCys, in a murine model of allergic inflammation. The TLR agonists were administered during allergen sensitization or challenge. Both TLR agonists decreased the allergen-induced pulmonary recruitment of eosinophils when administered at sensitization or challenge. When given before sensitization, the TLR4 and TLR2 agonists decreased additional allergen-induced parameters of inflammation (pulmonary eosinophilia, bronchoalveolar lavage IL-13, total serum IgE, and airway hyperresponsiveness). Interestingly, TLR4 and TLR2 agonists decreased the number of CD4+ cells in the lung. Also, at the site of local allergen stimulation, the draining thoracic lymph nodes, allergen-induced lymphocyte proliferation, and IL-13 secretion were decreased by administration of LpA and Ppg. These data provide a distinct example of the modulation of adaptive (allergic) responses by non-antigen-dependent stimuli. Our findings also demonstrate that both TLR4 and TLR2 agonists decrease allergic responses, supporting the concept that exposure to bacterial components under defined conditions may protect against allergic disease.
RationaleUnderstanding mechanisms of resistance to M. tuberculosis (M.tb) infection in humans could identify novel therapeutic strategies as it has for other infectious diseases, such as HIV.ObjectivesTo compare the early transcriptional response of M.tb-infected monocytes between Ugandan household contacts of tuberculosis patients who demonstrate clinical resistance to M.tb infection (cases) and matched controls with latent tuberculosis infection.MethodsCases (n = 10) and controls (n = 18) were selected from a long-term household contact study in which cases did not convert their tuberculin skin test (TST) or develop tuberculosis over two years of follow up. We obtained genome-wide transcriptional profiles of M.tb-infected peripheral blood monocytes and used Gene Set Enrichment Analysis and interaction networks to identify cellular processes associated with resistance to clinical M.tb infection.Measurements and main resultsWe discovered gene sets associated with histone deacetylases that were differentially expressed when comparing resistant and susceptible subjects. We used small molecule inhibitors to demonstrate that histone deacetylase function is important for the pro-inflammatory response to in-vitro M.tb infection in human monocytes.ConclusionsMonocytes from individuals who appear to resist clinical M.tb infection differentially activate pathways controlled by histone deacetylase in response to in-vitro M.tb infection when compared to those who are susceptible and develop latent tuberculosis. These data identify a potential cellular mechanism underlying the clinical phenomenon of resistance to M.tb infection despite known exposure to an infectious contact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.