ObjectiveWe tested the effect of exercise training and genistein treatment on splenomegaly in mice fed a high-fat, high-sugar diet (HFSD).ResultsMale and female C57BL6 mice fed HFSD containing 60% fat along with drinking water containing 42 g/L sugar (55% sucrose/45% fructose) for 12 weeks exhibited significant obesity, hyperglycemia, and elevated plasma IL-6 levels. This was accompanied by splenomegaly characterized by spleen weights 50% larger than mice fed standard chow (P < 0.05) with enlarged rad and white pulps. Mice fed HFSD and treated with a combination of exercise (30 min/day, 5 days/week) and genistein (600 mg genistein/kg diet) had reduced spleen weight (P < 0.05). The decrease in spleen weight was associated with a significant improvement in red-to-white pulp area ratio and plasma glucose and IL-6 (P < 0.05). Our findings indicate that reversal of splenomegaly by regular exercise and genistein treatment may be important in the clinical management of HFSD-induced obesity.
BackgroundAlzheimer’s disease (AD) and osteoporosis are progressive diseases that affect the elderly population. Both conditions are associated with fracture risk that is greater than twice that of the healthy population. Resveratrol and exercise are two treatments that have been linked with attenuation of age-related diseases, including the risk of bone fractures. In this study, we test the hypothesis that these treatments improve fracture resistance in a mouse model representative of the AD condition.MethodsThree-month-old male 3xTg-AD mice were treated for 4 months with resveratrol or exercise or both combined, and compared with wild type mice. Exercise training was performed on a treadmill at 15 m/min for 45 min/day, 5 days/week. Resveratrol was given at 4 g/kg diet in the form of pellets. Three-point bending, cross-sectional geometric, and fluorescence analyses were conducted on tibias and compared by treatment group.ResultsTibias of 3xTg mice exhibited signs of diminished bone quality and fracture under less force than age-matched wild type mice (P < 0.05). Treatment with both resveratrol and exercise improved indicators of fracture resistance and bone quality in AD mice to levels comparable to that of wild type mice (P < 0.05).ConclusionsThe 3xTg mouse model of AD is at elevated risk for limb bone fracture compared to wild type controls. Treatment with resveratrol, exercise, or both in combination improves fracture resistance and cross-sectional geometric indicators of bone strength.
Marfan syndrome (MfS) is a connective tissue disorder that results in aortic root widening and aneurysm if unmanaged. We have previously reported doxycycline, a nonselective matrix metalloproteinases (MMPs) inhibitor, to attenuate aortic root widening and improve aortic contractility and elasticity in MFS mice. We were also first to use multiphoton microscopy, a non-invasive and label-free imaging technique, to quantify and link the aortic ultrastructure to possible changes in the skin dermis. Here, we aimed to assess the effects of long-term doxycycline treatment on the aortic ultrastructure and skin dermis of MFS mice through immunohistochemical evaluation and quantification of elastic and collagen content and morphology using multiphoton microscopy. our results demonstrate a rescue of aortic elastic fiber fragmentation and disorganization accompanied by a decrease in MMP-2 and MMP-9 expression within the aortic wall in doxycycline-treated MFS mice. At 12 months of age, reduced skin dermal thickness was observed in both MFS and control mice, but only dermal thinning in MFS mice was rescued by doxycycline treatment. MMP-2 and MMP-9 expression was reduced in the skin of doxycycline-treated MfS mice. A decrease in dermal thickness was found to be positively associated with increased aortic root elastin disorganization and wall thickness. Our findings confirm the beneficial effects of doxycycline on ultrastructural properties of aortic root as well as on skin elasticity and structural integrity in MfS mice.Marfan Syndrome (MFS), an autosomal dominant genetic disorder affecting the connective tissues, is caused by mutations in the gene encoding the extracellular matrix (ECM) glycoprotein fibrillin-1 (FBN1) 1 . With an estimated incidence of 1 in 3,000-5,000 individuals, MFS patients exhibit prominent cardiovascular, skeletal, ocular and pulmonary abnormalities 2 . FBN1 protein monomers associate with one another to form microfibrils with structural and regulatory functions in the ECM and act as important scaffolds for elastin fiber and collagen deposition, and thus, provide structural integrity 3 . It is suggested that downstream detrimental effects of FBN1 protein abnormality in MFS is mainly due to disruption of its regulatory role of sequestering the latent form of transforming growth factor beta (TGF-β) in the extracellular space of connective tissue throughout the body 2 . In the cardiovascular system, degeneration of microfibrils leads to loss of elastin fiber integrity within the blood vessel wall, resulting in aortic elastin fiber fragmentation, disorganization, and reduced load bearing capacity, all of which contribute to aortic root aneurysm, dissections, and rupture as the leading cause of mortality in patients if left untreated 4 .Using a well-established mouse model of MFS that carries FBN-1 mutation similar to one found in human MFS patients with aortic aneurysm, our group has previously demonstrated that aortic aneurysm progression in MFS is associated with an upregulation of the matrix-degrading enzy...
Episiotomy is the surgical incision of the vaginal orifice and perineum to ease the passage of an infant’s head while crowning during vaginal delivery. Although episiotomy remains one of the most frequently performed surgeries around the world, short- and long-term complications from the procedure are not uncommon. We performed midline and mediolateral episiotomies with the aim of correlating commonly diagnosed postepisiotomy complications with risk of injury to perineal neuromuscular and erectile structures. We performed 61 incisions on 47 female cadavers and dissected around the incision site. Dissections revealed that midline incisions did not bisect any major neuromuscular structures, although they did increase the risk of direct and indirect injury to the subcutaneous portion of the external anal sphincter. Mediolateral incisions posed greater risk of iatrogenic injury to ipsilateral nerve, muscle, erectile, and gland tissues. Clinician discretion is advised when weighing the potential risks to maternal perineal anatomy during vaginal delivery when episiotomy is indicated. If episiotomy is warranted, an understanding of perineal anatomy may benefit diagnosis of postsurgical complications.
New methods on optical clearing provide a valuable alternative to traditional physical section histology. Optical clearing allows investigation of relatively large tissue samples at histological resolution while maintaining the three-dimensional architecture of the intact system. There is significant potential for applying optical clearing to gastrointestinal tissues. In particular, intestinal crypts contain high concentrations of stem cells, making these structures especially important for research on cellular proliferation in the intestinal epithelium. The objective of our study is to demonstrate an optical clearing method that is easy to implement and is compatible with mitotic fluorescent labeling. The optical clearing method we present utilizes a Triton/DMSO delipidization step followed by refractive index matching, rendering the tissue nearly transparent. We use EdU click chemistry to fluorescently label mitotic cell nuclei. Our results demonstrate successful clearing of jejunal samples with readily visible EdU staining by means of confocal microscopy. Three-dimensional reconstruction of labeled samples reveals preservation of intestinal cytoarchitecture including muscular, submucosal, and mucosal layers. Additionally, the morphology of intestinal crypts and individual EdU-positive mitotic nuclei are visible in sharp detail within their intact three-dimensional organization. In summary, we present an optical clearing method that is easy to implement and has the potential to provide more accurate assessment of cellular proliferation within the gastrointestinal tract in both healthy and disease states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.