This article considers the estimation of Approximate Dynamic Factor Models with homoscedastic, cross-sectionally correlated errors for incomplete panel data. In contrast to existing estimation approaches, the presented estimation method comprises two expectation-maximization algorithms and uses conditional factor moments in closed form. To determine the unknown factor dimension and autoregressive order, we propose a two-step information-based model selection criterion. The performance of our estimation procedure and the model selection criterion is investigated within a Monte Carlo study. Finally, we apply the Approximate Dynamic Factor Model to real-economy vintage data to support investment decisions and risk management. For this purpose, an autoregressive model with the estimated factor span of the mixed-frequency data as exogenous variables maps the behavior of weekly S&P500 log-returns. We detect the main drivers of the index development and define two dynamic trading strategies resulting from prediction intervals for the subsequent returns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.