The interaction between synthetic polymer nanoparticles (NPs) and biomacromolecules (e.g. proteins, lipids and polysaccharides) can profoundly influence the NPs fate and function. Polysaccharides (e.g. heparin/heparin sulfate) are a key component of cell surfaces and the extracelluar matrix and play critical roles in many biological processes. We report a systematic investigation of the interaction between synthetic polymer nanoparticles and polysaccharides by ITC, SPR and an anticoagulant assay to provide guidelines to engineer nanoparticles for biomedical applications. The interaction between acrylamide nanoparticles (~30 nm) and heparin is mainly enthalpy driven with submicromolar affinity. Hydrogen bonding, ionic interactions and dehydration of polar groups are identified to be key contributions to the affinity. It has been found that high charge density and cross linking of the NP can contribute to high affinity. The affinity and binding capacity of heparin can be significantly diminished by an increase in salt concentration while only slightly decreased with an increase of temperature. A striking difference in binding thermodynamics has been observed when polymer nanoparticle’s main component is changed from acrylamide (enthalpy driven) to N-isopropylacryalmide (entropy driven). This change in thermodynamics leads to different responses of these two types of polymer NPs to salt concentration and temperature. Select synthetic polymer nanoparticles have also been shown to inhibit protein-heparin interactions and thus offer the potential for therapeutic applications.
This manuscript describes an enantioselective synthesis of the naturally occurring alkaloid citrinadin B. The synthetic effort revealed an anomaly in the original structural assignment that has led to the proposal of a stereochemical revision. This revision is consistent with the structures previously reported for a closely related family of alkaloids, PF1270A-C. The synthesis is convergent and employs a stereoselective intermolecular nitrone cyloaddition reaction as a key step.
N‐Nitroso‐containing natural products are bioactive metabolites with antibacterial and anticancer properties. In particular, compounds containing the diazeniumdiolate (N‐nitrosohydroxylamine) group display a wide range of bioactivities ranging from cytotoxicity to metal chelation. Despite the importance of this structural motif, knowledge of its biosynthesis is limited. Herein we describe the discovery of a biosynthetic gene cluster in Streptomyces alanosinicus ATCC 15710 responsible for producing the diazeniumdiolate natural product l‐alanosine. Gene disruption and stable isotope feeding experiments identified essential biosynthetic genes and revealed the source of the N‐nitroso group. Additional biochemical characterization of the biosynthetic enzymes revealed that the non‐proteinogenic amino acid l‐2,3‐diaminopropionic acid (l‐Dap) is synthesized and loaded onto a free‐standing peptidyl carrier protein (PCP) domain in l‐alanosine biosynthesis, which we propose may be a mechanism of handling unstable intermediates generated en route to the diazeniumdiolate. These discoveries will facilitate efforts to determine the biochemistry of diazeniumdiolate formation.
Described herein are synthetic efforts toward the synthesis of hippolachnin A. Two independently devised routes from the Brown and Wood groups allowed for the synthesis of hippolachnin A from the unusual starting material, quadricyclane, by harnessing the power of late-stage C–H oxidation. Collaborative union of the best features of the two routes allowed for preparation of the molecule with improved efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.