Amphisomes, the autophagic vacuoles (AVs) formed upon fusion between autophagosomes and endosomes, have so far only been characterized in indirect, functional terms. To enable a physical distinction between autophagosomes and amphisomes, the latter were selectively density-shifted in sucrose gradients following fusion with AOM-gold-loaded endosomes (endosomes made dense by asialoorosomucoid-conjugated gold particles, endocytosed by isolated rat hepatocytes prior to subcellular fractionation). Whereas amphisomes, by this criterion, accounted for only a minor fraction of the AVs in control hepatocytes, treatment of the cells with leupeptin (an inhibitor of lysosomal protein degradation) caused an accumulation of amphisomes to about one-half of the AV population. A quantitative electron microscopic study confirmed that leupeptin induced a severalfold increase in the number of hepatocytic amphisomes (recognized by their gold particle contents; otherwise, their ultrastructure was quite similar to autophagosomes). Leupeptin caused, furthermore, a selective retention of endocytosed AOM-gold in the amphisomes at the expense of the lysosomes, consistent with an inhibition of amphisome-lysosome fusion. The electron micrographs suggested that autophagosomes could undergo multiple independent fusions, with multivesicular (late) endosomes to form amphisomes and with small lysosomes to form large autolysosomes. A biochemical comparison between autophagosomes and amphisomes, purified by a novel procedure, showed that the amphisomes were enriched in early endosome markers (the asialoglycoprotein receptor and the early endosome-associated protein 1) as well as in a late endosome marker (the cation-independent mannose 6-phosphate receptor). Amphisomes would thus seem to be capable of receiving inputs both from early and late endosomes.
To investigate the properties and intracellular origin of autophagosomes, a procedure for the purification and isolation of these organelles from rat liver has been developed. Isolated hepatocytes were incubated with vinblastine to induce autophagosome accumulation; the cells were then homogenized and treated with the cathepsin C substrate glycyl-l-phenylalanine 2-naphthylamide to cause osmotic disruption of the lysosomes. Nuclei were removed by differential centrifugation, and the postnuclear supernatant was fractionated on a discontinuous Nycodenz density gradient. The autophagosomes, recognized by their content of autophagocytosed lactate dehydrogenase (LDH), could be recovered in an intermediate-density fraction, free from cytosol and mitochondria. Finally, the autophagosomes were separated from the endoplasmic reticulum and other membranous elements by centrifugation in a Percoll colloidal density gradient, followed by flotation in iodixanol to remove the Percoll particles. The final autophagosome preparation represented a 24-fold purification of autophagocytosed LDH relative to intact cells, with a 12% recovery. The purified autophagosomes contained sequestered cytoplasm with a normal ultrastructure, including mitochondria, peroxisomes and endoplasmic reticulum in the same proportions as in intact cells. However, immunoblotting indicated a relative absence of cytoskeletal elements (tubulin, actin and cytokeratin), which may evade autophagic sequestration. The autophagosomes showed no enrichment in protein markers typical of lysosomes (acid phosphatase, cathepsin B, lysosomal glycoprotein of 120 kDa), endosomes (early-endosome-associated protein 1, cation-independent mannose 6-phosphate receptor, asialoglycoprotein receptor) or endoplasmic reticulum (esterase, glucose-regulated protein of 78 kDa, protein disulphide isomerase), suggesting that the sequestering membranes are not derived directly from any of these organelles, but rather represent unique organelles (phagophores).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.