Disturbance regimes are changing rapidly, and the consequences of such changes for ecosystems and linked social-ecological systems will be profound. This paper synthesizes current understanding of disturbance with an emphasis on fundamental contributions to contemporary landscape and ecosystem ecology, then identifies future research priorities. Studies of disturbance led to insights about heterogeneity, scale, and thresholds in space and time and catalyzed new paradigms in ecology. Because they create vegetation patterns, disturbances also establish spatial patterns of many ecosystem processes on the landscape. Drivers of global change will produce new spatial patterns, altered disturbance regimes, novel trajectories of change, and surprises. Future disturbances will continue to provide valuable opportunities for studying pattern-process interactions. Changing disturbance regimes will produce acute changes in ecosystems and ecosystem services over the short (years to decades) and long-term (centuries and beyond). Future research should address questions related to (1) disturbances as catalysts of rapid ecological change, (2) interactions among disturbances, (3) relationships between disturbance and society, especially the intersection of land use and disturbance, and (4) feedbacks from disturbance to other global drivers. Ecologists should make a renewed and concerted effort to understand and anticipate the causes and consequences of changing disturbance regimes.
Ecological memory is central to how ecosystems respond to disturbance and is maintained by two types of legacies – information and material. Species life‐history traits represent an adaptive response to disturbance and are an information legacy; in contrast, the abiotic and biotic structures (such as seeds or nutrients) produced by single disturbance events are material legacies. Disturbance characteristics that support or maintain these legacies enhance ecological resilience and maintain a “safe operating space” for ecosystem recovery. However, legacies can be lost or diminished as disturbance regimes and environmental conditions change, generating a “resilience debt” that manifests only after the system is disturbed. Strong effects of ecological memory on post‐disturbance dynamics imply that contingencies (effects that cannot be predicted with certainty) of individual disturbances, interactions among disturbances, and climate variability combine to affect ecosystem resilience. We illustrate these concepts and introduce a novel ecosystem resilience framework with examples of forest disturbances, primarily from North America. Identifying legacies that support resilience in a particular ecosystem can help scientists and resource managers anticipate when disturbances may trigger abrupt shifts in forest ecosystems, and when forests are likely to be resilient.
Abstract. Ecosystem management is management driven by explicit goals, executed by policies, protocols, and practices, and made adaptable by monitoring and research based on our best understanding of the ecological interactions and processes necessary to sustain ecosystem composition, structure, and function.In recent years, sustainability has become an explicitly stated, even legislatively mandated, goal of natural resource management agencies. In practice, however, management approaches have often focused on maximizing short-term yield and economic gain rather than long-term sustainability. Several obstacles contribute to this disparity, including: ( 1) inadequate information on the biological diversity of environments; (2) widespread ignorance of the function and dynamics of ecosystems; (3) the openness and interconnectedness of ecosystems on scales that transcend management boundaries; (4) a prevailing public perception that the immediate economic and social value of supposedly renewable resources outweighs the risk of future ecosystem damage or the benefits of alternative management approaches. The goal of ecosystem management is to overcome these obstacles.Ecosystem management includes the following elements: (1) Sustainability. Ecosystem management does not focus primarily on "deliverables" but rather regards intergenerational sustainability as a precondition. (2) Vol. 6, No.3 goals that specify future processes and outcomes necessary for sustainability. (3) Sound ecological models and understanding. Ecosystem management relies on research performed at all levels of ecological organization. (4) Complexity and connectedness. Ecosystem management recognizes that biological diversity and structural complexity strengthen ecosystems against disturbance and supply the genetic resources necessary to adapt to long-term change.(5) The dynamic character of ecosystems. Recognizing that change and evolution are inherent in ecosystem sustainability, ecosystem management avoids attempts to "freeze" ecosystems in a particular state or configuration. (6) Context and scale. Ecosystem processes operate over a wide range of spatial and temporal scales, and their behavior at any given location is greatly affected by surrounding systems. Thus, there is no single appropriate scale or time frame for management. (7) Humans as ecosystem components. Ecosystem management values the active role of humans in achieving sustainable management goals. (8) Adaptability and accountability. Ecosystem management acknowledges that current knowledge and paradigms of ecosystem function are provisional, incomplete, and subject to change. Management approaches must be viewed as hypotheses to be tested by research and monitoring programs.The following are fundamental scientific precepts for ecosystem management.(1) Spatial and temporal scale are critical. Ecosystem function includes inputs, outputs, cycling of materials and energy, and the interactions of organisms. Boundaries defined for the study or management of one process are often inapp...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.