Aims/hypothesis. The electrons of the glycolysis-derived reduced form of NADH are transferred to mitochondria through the NADH shuttle system. There are two NADH shuttles: the glycerol phosphate and malate-aspartate shuttle. Mice with a targeted disruption of mitochondrial glycerol-3-phosphate dehydrogenase, a rate-limiting enzyme of the glycerol phosphate shuttle, are not diabetic and have normal islet glucoseinduced secretion. In this study, we analyzed if environmental factors, such as a high carbohydrate diet could contribute to the development of Type 2 diabetes mellitus in mice with a specific defective genetic background. Methods. The mice were fed with a high carbohydrate diet for 1 and 6 months, and several biochemical parameters were analysed. The mitochondrial respiratory activity was assayed by polarography; and the islet function was studied by islet perifusion and pancreas perfusion.Results. The high carbohydrate diet induced hyperglycaemia, hyperinsulinaemia, and islet hyperplasia in the wild-type and heterozygote mice. Activity of the respiratory chain complex I also increased in these mice. In contrast, these effects were not observed in the null mice fed with the diet; in addition, these null mice had an increased insulin sensitivity compared to wild-type mice. Conclusion/interpretation. The phenotype of the mice with an impairment of NADH shuttles does not worsen when fed a high carbohydrate diet; moreover, the diet does not compromise islet function. [Diabetologia (2003[Diabetologia ( ) 46:1394[Diabetologia ( -1401 Keywords High carbohydrate diet, mitochondrial metabolism, mGPDH, beta cell, glycerol phosphate shuttle, insulin secretion. A. Barberà and M. Gudayol have contributed equally to this paper Diabetologia
Ca2+-responsive mitochondrial FAD-linked glycerophosphate dehydrogenase (mGPDH) is a key component of the pancreatic beta-cell glucose-sensing device. The purpose of this study was to examine the association of mutations in the cDNA coding for the FAD-binding domain of mGPDH and to explore the functional consequences of these mutations in vitro. To investigate this association in type 2 diabetes mellitus, we studied a cohort of 168 patients with type 2 diabetes and 179 glucose-tolerant control subjects of Spanish Caucasian origin by single-stranded conformational polymorphism analysis. In vitro site-directed mutagenesis was performed in the mGPDH cDNA sequence to reproduce those mutations that produce amino acid changes in a patient with type 2 diabetes. We detected mutations in the mGPDH FAD-binding domain in a single patient, resulting in a Gly to Arg amino acid change at positions 77, 78, and 81 and a Thr to Pro at position 90. In vitro expression of the mutated constructs in Xenopus oocytes resulted in a significantly lower enzymatic activity than in cells expressing the wild-type form of the enzyme. Our results indicate that although mutations in the mGPDH gene do not appear to have a major role in type 2 diabetes mellitus, the reduction in mGPDH enzymatic activity associated with the newly described mGPDH mutations suggests that they may contribute to the disease in some patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.