The Potato yellow vein virus (PYVV), a Crinivirus with an RNA tripartite genome, is the causal agent of the potato yellow vein disease, reported in Colombian since 1950, with yield reductions of up to 50%. Co-infection of two or more viruses is common in nature and can be associated with differences in virus accumulation and symptom expression. No evidence of mixed infection between PYVV and other viruses has been reported. In this study, eight plants showing yellowing PYVV symptoms: four Solanum tuberosum Group Phureja (P) and four Group Andigena (A), were collected in Cundinamarca, Colombia to detect mixed infection in the isolates using next generation sequencing (NGS). The Potato virus Y (PVY) complete genome (similar to N strain) and the Potato virus V (PVV) partial genomes were detected using NGS and re-confirmed by RT-PCR. Preliminary field screening in a large sample showed that PYVV and PVY co-infect potato plants with a prevalence of 21% within the P group and 23% within the A group. This is the first report of co-infection of PYVV and potyvirus in Colombia and with the use of NGS. Considering that potyviruses enhance symptom severity and/or yield reductions in mixed infections, our results may be relevant for disease diagnosis, breeding programs and tuber certification.
Potato yellow vein virus (PYVV) is currently one of the most important viruses that infects potatoes in Colombia and other Andean countries, causing losses in the production of tubers ranging from 25% to 50%. This study analyzed the genetic variability of different viral isolates collected in the department of Nariño, Colombia, through bioinformatics analysis of the sequences of three genes encoding the capsid protein (CP), the heat-shock protein 70 (Hsp70) and the minor capsid protein (CPm). We found that CPm is the gene that shows greater diversity, with higher values of nucleotide substitution and evidence of recombination. Based on an analysis of the haplotype map using nucleotide sequences of the CPm, we propose a model of putative recombination in this genomic region. The non-recombinant segments are supported by the results of the program GARD (Genetic Algorithm for Recombination Detection), phylogenetic trees and the paired values of genetic distances of each non-recombinant segments. The model clearly shows that the amino region of the CPm is prone to recombination. To our knowledge, this is the first report of genetic recombination as an evolutionary strategy in the CPm of PYVV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.