Primary structural information of anhydride binding to endogenous proteins is of interest in order to determine the mechanism causing the type-I allergy seen in many anhydride-exposed workers. In addition, studies on specific protein adducts may generate new methods for biological monitoring. In this study, the binding of hexahydrophthalic anhydride (HHPA) to human hemoglobin (Hb) in vitro was investigated. The in vitro synthesized conjugates were analyzed using a hybrid quadrupole-time-of-flight mass spectrometer (Q-TOF) with electrospray ionization (ESI) to determine the number of HHPA adducts per Hb molecule. Structural information on the locations of the adducts was obtained through nanospray Q-TOF, liquid chromatography-ESI mass spectrometric analysis, and gas chromatography/mass spectrometric analysis of Pronase E and tryptic digests. Up to six adducts were found on the alpha-chain and five on the beta-chain. The HHPA-adducts were localized to the N-terminal valine of the alpha- and beta-chains of Hb and to lysine residues at positions 7, 11, 16, and 40 of the alpha-chain and 8, 17, 59, 66, and 144 of the beta-chain. These results will constitute a basis for studies on structure-activity relationships as well as for development of methods for biological monitoring of acid anhydrides.
Hexahydrophthalic anhydride (HHPA) is a highly sensitizing industrial chemical that is known to covalently bind to endogenous proteins. The aim of this study was to determine the binding sites of HHPA to human serum albumin (HSA). Conjugates between HSA and HHPA, at two different molar ratios, were synthesized under physiological conditions. The conjugates were digested with trypsin and Pronase E to obtain specific peptides and amino acids, which were separated by liquid chromatography (LC). Fractions containing modified peptides were detected through quantification of hydrolysable HHPA using LC coupled to a triple quadrupole mass spectrometer with electrospray ionization. Modified residues in albumin were identified by sequence analyses using nanoelectrospray quadrupole time-of-flight mass spectrometry. A total of 36 HHPA adducts were found in the HSA-HHPA conjugate with 10 times molar excess of added HHPA. In the conjugate with a molar ratio of 1:0.1 of added HHPA, seven HHPA adducts were found bound to Lys(137) (domain IB), Lys(190), Lys(199) and Lys(212) (domain IIA), Lys(351) (domain IIB), and Lys(432) and Lys(436) (domain IIIA). Moreover, several of these adducted albumin peptides were detected in nasal lavage fluid from one volunteer exposed to HHPA. The binding sites of HHPA to HSA have been determined, thus identifying potential allergenic chemical structures. This knowledge generates the possibility of developing methods for the biological monitoring of HHPA exposure by analysing tryptic peptides including these binding sites.
Haptens causing type I allergy have been shown to predominantly form lysine adducts in the carrier protein, while many haptens giving rise to type IV allergy preferentially form adducts with cysteine residues. Hexahydrophthalic anhydride derivatives are strong sensitizers capable of inducing allergic rhinitis, asthma and urticaria (type I allergy) and allergic contact dermatitis (type IV allergy). The ability of hexahydrophthalic anhydride (HHPA) to form adducts with nucleophilic amino acids and a model peptide in vitro is presented. Adduct formation was monitored by high-performance liquid chromatography with ultraviolet light/vis detection (LC-UV/vis) and high-performance liquid chromatography with mass spectrometric detection (LC/MS). The characterization was obtained by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS and MS/MS). It was found that HHPA formed adducts with N(alpha)-acetylated lysine and cysteine and the non-acetylated alpha-amino group of proline and, to some extent, also with other nucleophilic amino acids. The adducts with lysine and proline were chemically stable. Addition of one HHPA to a model carrier peptide with all important nucleophilic amino acid residues showed N-terminal proline to be the major site of reaction. The addition of a second hapten gave a lysine adduct, but a minor cysteine adduct was also found. The cysteine-HHPA adducts were shown to be chemically unstable and participated in further reactions with lysine forming lysine-HHPA adducts. The results will be useful for understanding the formation of HHPA-protein adducts with the capability of being markers of exposure, and also to a deeper understanding of the chemical structures causing types I and IV allergy.
SJL mice colonized with RcsX lymphoma cells undergo a rapid inflammatory response associated with biological and physiological effects including increased nitric oxide production and mutations in spleen DNA. By two weeks post-colonization, these changes were accompanied by both up-and down-regulation of a number of plasma proteins. In the experiments reported here, plasma from individual SJL mice were analyzed at several time-points over the two-week period in order to determine if there were sets of proteins whose expression varied in concert and thus might serve as early biomarkers for inflammation-related disorders. Samples were collected just prior to injection of the RcsX cells and then after 4, 8, and 12 days. Albumin and immunoglobulins were depleted and the samples were resolved by 1D gel electrophoresis. The gels were cut into 20 slices, and the proteins digested in-gel with trypsin. The digests were treated with iTRAQ reagents and then analyzed by LC/MS/MS. The resulting data were processed with two software packages, i.e., ProQuant and Spectrum Mill, and then subjected to K-means cluster analysis (K=4). The four clusters revealed a set of highly up-regulated proteins, a set of progressively up-regulated proteins, a set with no major changes, and a set that declined. The first cluster included haptoglobin, and serum amyloid A; the second included groups with several functions including protease inhibition, cell motility, and transport. The iTRAQ results for a selection of the up-regulated proteins, including haptoglobin, hemopexin, serum amyloid P component and ceruloplasmin, were confirmed with Western blots. Prominent down-regulated proteins included esterase-1, paraoxonase, and alpha-2-macroglobulin. Approximately 50% of the upregulated proteins are canonical acute phase proteins, while the remainder are regulated by the Nrf2 transcription factor.
1,3-Butadiene (BD) has been classified as a potential human carcinogen. It occurs in the environment as well as in industrial settings. In humans, BD is readily metabolized to reactive epoxides (e.g. 1,2-epoxy-3,4-butanediol). In this study, conjugates between human serum albumin (HSA) and EBD were synthesized (molar ratios of 1:600, 1:1 and 1:0.1; HSA/EBD) under physiological conditions. The 1:600 conjugate and a blank HSA sample were digested with trypsin to obtain specific peptides that were fractionated by preparative liquid chromatography (LC). The fractions were analyzed using nanoelectrospray quadrupole time-of-flight mass spectrometry (nanoES-QqTOFMS). Adducted HSA tryptic peptides were identified and the adducted amino acid residues were identified by sequence analysis based on tandem mass spectrometry (MS/MS). A total of 26 2,3,4-trihydroxybutyl (THB) adducts were identified on 23 tryptic peptides in the HSA/EBD conjugate. The adducted amino acids were the N-terminal aspartic acid residue, six glutamic acid residues, five histidine residues and 14 lysine residues. Results from the nanoES-QqTOFMS experiments were used to set up a more sensitive liquid chromatographic/mass spectrometric (LC/MS) analysis using selected reaction monitoring. Eight of the adducted peptides could be detected in tryptic digests of the 1:0.1 HSA/EBD conjugate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.