Mutations in the evolutionarily conserved codons of the p53 tumor suppressor gene are common in diverse types of human cancer. The p53 mutational spectrum differs among cancers of the colon, lung, esophagus, breast, liver, brain, reticuloendothelial tissues, and hemopoietic tissues. Analysis of these mutations can provide clues to the etiology of these diverse tumors and to the function of specific regions of p53. Transitions predominate in colon, brain, and lymphoid malignancies, whereas G:C to T:A transversions are the most frequent substitutions observed in cancers of the lung and liver. Mutations at A:T base pairs are seen more frequently in esophageal carcinomas than in other solid tumors. Most transitions in colorectal carcinomas, brain tumors, leukemias, and lymphomas are at CpG dinucleotide mutational hot spots. G to T transversions in lung, breast, and esophageal carcinomas are dispersed among numerous codons. In liver tumors in persons from geographic areas in which both aflatoxin B1 and hepatitis B virus are cancer risk factors, most mutations are at one nucleotide pair of codon 249. These differences may reflect the etiological contributions of both exogenous and endogenous factors to human carcinogenesis.
Mutations in the tumor suppressor gene TP53 are frequent in most human cancers. Comparison of the mutation patterns in different cancers may reveal clues on the natural history of the disease. Over the past 10 years, several databases of TP53 mutations have been developed. The most extensive of these databases is maintained and developed at the International Agency for Research on Cancer. The database compiles all mutations (somatic and inherited), as well as polymorphisms, that have been reported in the published literature since 1989. The IARC TP53 mutation dataset is the largest dataset available on the variations of any human gene. The database is available at www.iarc.fr/P53/. In this paper, we describe recent developments of the database. These developments include restructuring of the database, which is now patient-centered, with more detailed annotations on the patient (carcinogen exposure, virus infection, genetic background). In addition, a new on-line application to retrieve somatic mutation data and analyze mutation patterns is now available. We also discuss limitations on the use of the database and provide recommendations to users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.