International audienceSargassum muticum, an invasive brown macroalga presently distributed along European Atlantic coasts from southern Portugal to the south coast of Norway, was studied on a large geographical scale for its production of phenolic compounds with potential industrial applications and their chemical and biological activities. S. muticum can produce high biomass in Europe, which could be exploited to supply such compounds. S. muticum was collected in Portugal, Spain, France, Ireland and Norway (three sites/country) to examine the effect of the latitudinal cline and related environmental factors. Assays focused particularly on polyphenols and their activities. Crude acetone-water extracts were purified using solid phase extraction (SPE) and antioxidant and antimicrobial activities of crude extracts and semi-purified fractions measured. Total phenolic content was assessed by colorimetric Folin-Ciocalteu assay and reactive oxygen species activities by 2,2-diphenyl-1-picrylhydrazyl, reducing power, β-carotene bleaching method and xanthine oxidase assay. Antibacterial activities were tested on terrestrial and marine strains to evaluate potential use in biomedical and aquaculture fields. Purified active phlorotannins, isolated by SPE, were identified using NMR. Phenolic contents differ clearly among countries and among sites within countries. Quality did not change between countries, however, although there were some slight differences in phlorethol type. Additionally, some fractions, especially from the extreme north and south, were very active. We discuss this in relation to environmental conditions and the interest of these compounds. S. muticum represents a potential natural source of bioactive compounds and its collection could offer an interesting opportunity for the future management of this species in Europe
Anthropogenically induced global climate change has important implications for marine ecosystems with unprecedented ecological and economic consequences. Climate change will include the simultaneous increase of temperature and CO2 concentration in oceans. However, experimental manipulations of these factors at the community scale are rare. In this study, we used an experimental approach in mesocosms to analyse the combined effects of elevated CO2 and temperature on macroalgal assemblages from intertidal rock pools. Our model systems were synthetic assemblages of varying diversity and understory component and canopy species identity. We used assemblages invaded by the non‐indigenous canopy forming alga Sargassum muticum and assemblages with the native canopy species Cystoseira tamariscifolia. We examined the effects of both climate change factors on several ecosystem functioning variables (i.e. photosynthetic efficiency, productivity, respiration and biomass) and how these effects could be shaped by the diversity and species identity of assemblages. CO2 alone or in combination with temperature affected the performance of macroalgae at both individual and assemblage level. In particular, high CO2 and high temperature (20°C) drastically reduced the biomass of macroalgal assemblages and affected their productivity and respiration rates. The identity of canopy species also played an important role in shaping assemblage responses, whereas species richness did not seem to affect such responses. Species belonging to the same functional effect group responded differently to the same environmental conditions. Data suggested that assemblages invaded with S. muticum might be more resistant in a future scenario of climate change. Thus, in a future scenario of increasing temperature and CO2 concentration, macroalgal assemblages invaded with canopy‐forming species sharing response traits similar to those of S. muticum could be favoured.
Temporal variations and spatial distribution of sedimentary organic matter composition were investigated over a one year period in an intertidal flat of the NW Spain. Sediment samples were collected from 0 to 25 cm depth, every three months, from January 1997 to January 1998 at three tidal levels (high, medium and low). Changes in the elemental and biochemical composition were assessed to gather information on temporal and spatial fluctuations in quantity and quality of sedimentary organic matter potentially available to benthic deposit-feeder nutrition. Organic matter content was significantly higher at the medium tidal level, while minimum values were found at the high tidal level. The different biochemical classes of organic compounds exhibited different temporal patterns. Carbohydrate and lipid concentrations decreased with sediment depth. The biopolymeric fraction of organic carbon (i.e. the sum of lipid, carbohydrate and protein carbon) was dominated by proteins (61%), followed by lipids (26%) and carbohydrates (14%). Biopolymeric carbon accounted for only a small fraction (37% on average) of the total organic carbon. Refractory organic carbon (i.e. non biopolymeric) accounted for 50 to 80% of the total organic carbon and it tended to be buried into deeper sediment layers. The nutritional quality of the sedimentary organic matter, expressed as the biopolymeric carbon to total organic carbon ratio, was higher in January 1997, when also the higher protein to carbohydrate ratio values were observed and related to the presence of newly-produced organic matter. Low biopolymeric carbon to total organic carbon ratio and protein to carbohydrate ratio were recorded during the rest of the year, indicating a low-quality and aged organic matter. Results of the present study revealed an inverse relationship between the overall amount of organic matter and its potential availability to consumers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.