Nb solute behavior and its effect on grain size stabilization in Cu-Nb alloys was studied using a combination of Vickers hardness testing, x-ray diffraction measurements, transmission electron microscopy and atom probe tomography (APT). Cu-Nb alloys with concentrations in the range from 1 to 10 at. % Nb were studied after annealing at 400°C and 800°C. The grain growth resistance at both temperatures increased with an increase in Nb solute content. For instance, after annealing at 800°C (0.74 T m), Cu-1Nb, Cu-5Nb and Cu-10Nb have a grain size that is ~8, ~14 and ~14 times respectively smaller than that of unalloyed Cu. This resistance is attributed to the formation of Nb-oxide-based clusters, elemental Nb segregation zones and large elemental (Nb)-based precipitates as observed by APT. The Nb-oxide-based clusters are the precursors of phase separation and form due to a reaction with oxygen, which is a contaminant from the milling process. Once the oxygen is consumed, the process continues and the grain boundaries accumulate more solute and begin to thicken into elemental Nb segregation zones. Eventually, Nb solute phase separates and forms Nb-based precipitates. After annealing at 400°C and 800°C, Cu-5Nb has a hardness which is approximately 2.5 times and 3 times respectively that of the hardness of unalloyed Cu after an equivalent anneal. This increase has been attributed to Hall-Petch strengthening and precipitation strengthening.
Two experimental bcc-Cu-and B2-NiAl-precipitation-strengthened ferritic steels with 6.3 at. % and 12.4 at. % Cu+Mn+Ni+Al, 950 MPa and 1600 MPa yield strength respectively, were studied. Atom probe tomography showed that the volume fraction and number density of NiAl-type precipitates in the heavier alloyed steel (designated as CF-9) is ~ 60-70 times greater than those in the lighter alloyed steel (designated as CF-2). This is attributed to the smaller lattice misfit between these NiAl-type precipitates and the ferritic matrix in CF-9 due to more incorporation of Mn atoms on the Al sub-lattice in the B2 NiAl unit cell. Loading rate sensitivity of hardness was measured for CF-2, CF-9 and SAE-1090, which does not have bcc-Cu precipitates. Results show that even though CF-2 and CF-9 have double and triple the strength of SAE-1090 respectively, their hardness shows weaker dependence on loading rate. This is attributed to the presence of bcc-Cu precipitates in CF-2 and CF-9 providing athermal activation of nearby screw dislocation motion. Auger electron spectroscopy studies of CF-9 samples reveal Cu segregation on grain boundaries. The observed Cu segregation is believed to be partly responsible for the lower elongation-to-failure of CF-9 compared with CF-2.
a b s t r a c tA series of bulk nanostructured FeeNieZr oxide-dispersion-strengthened (ODS) alloys were synthesized using high energy mechanical alloying and consolidated using high temperature equal channel angular extrusion. The resultant microstructures are composed of nano/ultrafine or micrometer-sized grains with larger intermetallic precipitates and small Zr oxide clusters (<10 nm diameter, measured and confirmed by atom probe tomography). The ODS alloys possess elevated compression properties, e.g., 1.2 and 2.4 GPa compressive yield stress at room temperature for samples consolidated at 700 C and 1000 C, respectively. This work highlights the relationship between processing, microstructure, and properties for this class of ferritic ODS alloys.Published by Elsevier B.V.
Composition analysis of carbide and carbo-nitride precipitates was performed for two Nb-Ti microalloyed steels with yield strengths of 750 and 580 MPa using an atom probe study. In the high-Ti 750 MPa steel, Ti-rich (Ti,Nb)(C,N) and Ti-rich (Ti,Nb)(C) precipitates were observed. In the high-Nb 580 MPa steel, a Ti-rich (Ti,Nb)(C,N) precipitate and (Ti,Nb)(C) clusters were noted. These (Ti,Nb)(C) clusters in the high-Nb 580 MPa steel were smaller than the (Ti,Nb)(C) precipitates in high-Ti 750 MPa steel. In general, a larger number of precipitates were found in the high-Ti 750 MPa steel. This difference in the number density of the precipitates between the two steels is attributed to the difference in Ti content. Combining the atom probe tomography results and thermodynamic calculations, the precipitation sequence in these alloys was inferred to be the following: as the temperature decreases, TiN precipitates out of the solution with successive (Ti,Nb)(C,N) layers of varying composition forming on these Ti-rich precipitates. Once N is depleted from the solution, a second set of (Ti,Nb)(C) precipitates in a similar manner in the matrix and also onto the carbo-nitride phase. This observation is consistent with previous observations in high-strength low-alloy steels containing comparable amounts of only Nb. It was noted that the amount of Nb, Nb/(Nb + Ti), in the precipitates decreased from 0.20 to 0.04 with the size of the precipitate. We believe that this is due to the Nb supersaturation in the matrix when these precipitates nucleate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.